Electron capture branching ratio measurements for double β decay experiments at TITAN-TRIUMF

T. Brunner1, C. Andreou1, M. Brodeur1, D. Frekers1, S. Ettenauer1, A. Gallant1, R. Krüken1, Lapiere1, R. Ringle1
and the TITAN-EC collaboration

TRIUMF, Vancouver "TUM, München "SFU, Vancouver "UBC, Vancouver "Universität Münster

Electron capture branching ratio measurements

Physics beyond the Standard Model

- Neutrino oscillation experiments:
 - Indicate that the neutrino is a massive particle [1]
 - Only provide mixing angle θ and $\sin^2\theta$
 - Experiments: SNO, SuperK, T2K

- Absolute neutrino mass:
 - Effective mass for degenerated neutrinos from He decay experiments $m_e = \frac{E}{c^2}$ [8]
 - Astrophysical limits
 - $|\beta| = \frac{m_e}{m_{CE}}$ decay experiments

- $2\nu\beta\beta$ decay
 - Allowed in Standard Model $T > 10^{24}$
 - Neutrino is a Dirac particle within the Standard Model

- $0\nu\beta\beta$ decay
 - Physics beyond Standard Model
 - Lepton number violating process $T > 1.5 \cdot 10^{25}$ [3]
 - Majorana mass term enters neutrino mass

Theoretical models:

- Nuclear shell model [5]
- Interacting boson model [8]
- Proton-neutron Quasi-particle Random Phase Approximation (pnQSPA) [7]

pnQSPA

- Adjustable particle-particle parameter g_{ν}
- Fix g_ν with $2\nu\beta\beta$ decay (very sensitive on g_{ν}) to calculate $M_{\nu
u}$
- $0\nu\beta\beta$ decay much less dependent on g_{ν}
- Calculated $M_{\nu
u}$ vary by a factor 2-5
- $M_{\nu
u}$ need with an uncertainty of less than 20% [8]
- Same g_ν enters single β decay and Electron Capture (EC) calculations

Electron Capture Branching Ratio measurements ideal benchmark experiment to test theoretical models

Proof of principle

- 107In ($t_{1/2}=32.4\text{ min}$) experiment to determine electron capture matrix element $M_{\nu\nu}$

Goals for 107In experiment

- Inject 107In into trap
- Identify 107In after trap on a Si detector
- Store radioactive ions inside trap
- Observe X-rays following an EC of ions stored inside the trap
- Identify these X-rays from EC
- Observe electrons from β decays
- Use of Ge and LeGe detector

Analysis of 107In spectra:

- Spectra of 192.82 min run time
- Only one detector
- 0.02% solid angle
- Clear signature of 107In decay

Ge detector

- Spectrum of 69.19 min run time
- Energy resolution worse than LeGe
- Solid angle of 0.25%

Electron Capture BR program at TITAN

- $|\beta| = \frac{m_e}{m_{CE}}$ decay candidates that are under investigation in experiments such as Majorana, EXO, COBRA, CUORE and others [12]

Run plan for 107Tc

- Accumulating 10 spills in trap containing 100000 ions in trap
- Storage time of 15s calculates to 50000 $|\beta| = \frac{m_e}{m_{CE}}$ decays
- 0.9 EC decays
- $5.6 \cdot 10^8$ detected EC in 15s
- A 10% accuracy needs 100 detected events
- 17000 trap fills
- 20% overhead
- Total estimated time ~ 88 h

FIRST observation of an electron capture of isotopes stored in a Penning trap

For the future

- Apply sideband cooling to increase the number of ions inside the trap
- Test anti-coincidence during an experiment with 107Cd in July
- First EC-BR measurement for $|\beta| = \frac{m_e}{m_{CE}}$ decay matrix elements in November

Determination of $M_{\nu\nu}$ at TITAN

A novel approach to determine the electron capture matrix element $M_{\nu\nu}$ is being developed at the TITAN facility, using the EBIT as an open access Penning trap

- Radioactive isotopes are delivered by TRIUMF's ISAC facility
- Deceleration, cleaning and cooling of ions happens in TITAN’s RF-cropper and bouncer
- The cryogenic Penning trap (EBIT) allows the storage of 10^{10} to 10^{11} ions due to a good vacuum ($P_{\text{in}} < 10^{-10}\text{ mbar}$)
- Helmholtz coil geometry allows visible access to trapped ions
- Up to 7 X-ray detectors can be installed radially around trap to detect X-rays following an electron capture (solid angle $\sim 2.1\%$)
- A β detector at the trap exit is used to monitor the number of ions stored inside the trap
- Spatial separation of β and X-ray detection due to 6T B-field

Electron capture branching ratio (EC-BR) measurements

Comparison of different Ge matrix elements from experiments

Signatures of 107In and 116Cd

Clear signature of electron capture of 107In and 116Cd

Summary

- Electron capture branching ratio measurements are ideal benchmark experiment to test theoretical models
- Electron capture branching ratio measurements are ideal benchmark experiment to test theoretical models
- Electron capture branching ratio measurements are ideal benchmark experiment to test theoretical models
- Electron capture branching ratio measurements are ideal benchmark experiment to test theoretical models
- Electron capture branching ratio measurements are ideal benchmark experiment to test theoretical models