Charge breeding with EBIS/T within I3-EURONS

1) Motivation and objectives
2) EBIS/T basics relevant for breeding
3) Participants and available set-ups
4) Advanced charge breeding (tasks)
* 9 networking activities, 11 access activities (large scale facilities) and 13 joint research activities (JRA)

* Networking: further integration and coordination of nuclear structure activities within Europe

* Access: implementation and coordination of the access to various European research infrastructures (GSI, GANIL, ISOLDE...) for most efficient use

* JRAs: Ion source technology, detection systems, instrumentation for reaction studies in storage rings, instruments for precision experiments

* Support from the EU 14,055 M€

* Contribution from EU for JRA3 (charge breeding) 420 k€
Motivation for breeding ions

- Highly charged ions of isotopes from different regions of the nuclear chart become available for post acceleration

- Post accelerator becomes more efficient
 (pulsed structures at higher resonance frequencies)

- Highly charged ions for low energy experiments
 (mass measurements, Penning trap assisted spectroscopy, X-ray spectroscopy, reaction spectroscopy etc.)

- Determination of ionisation cross sections (well defined current density)
Charge state breeder set-up

- Post accelerator or experiment
- Mass analyzer
- Low energetic q^+ ions
- Switch yard
- Charge breeding device
- Isotopes from production area
- Buffer gas emittance cooler

Examples:
- REX-ISOLDE (CERN)
- Crysis (MSL)
- TITAN (TRIUMF)
- MATS (NUSTAR, GSI)

Oliver Kester, TITAN workshop, 10.06.2005
Objectives advanced charge breeding

To optimize the charge breeding process:

* Increasing the breeding efficiency
* Improving the beam quality
* Improving the beam purification

Three relevant processes determine efficiency, beam quality and beam purity, which can be improved:

* Injection into the high charge state ion source
* Breeding and cooling of highly charges ions
* Extraction and separation of the exotic nuclei.
Limits from the ion source

- **intensity**
 - confinement capacity,
 - breeding time (rep. rate)

- **short lifetime**
 - electron current density

- **efficiency**
 - beam cooling & injection,
 - confinement capacity,
 - charge state distribution,
 - extraction emittance

- **beam purity**
 - rest gas pressure,
 - small emittance,
 - beam optics
1) Ludwig Maximilians Universität München, Germany
(activity coordinator, O. Kester)
in collaboration with GSI and Frankfurt university (R. Becker)

2) LPSC Grenoble, France (T. Lamy, P. Sortais)

3) CLRC Daresbury, UK (K. Connell, D. Warner)
in collaboration with C. Barton (York)

4) ISOLDE (CERN), Switzerland
(P. Delahaye, T. Fritioff, F. Wenander, M. Lindroos, C. Hill)

5) MPI-K Heidelberg, Germany (J. R. Crespo, J. Ullrich)

Guests and observers: GANIL, INFN-LNL, TRIUMF, RIKEN

Oliver Kester, TITAN workshop, 10.06.2005
ISOLDE: REXEBIS

- Magnetic field 2 T
- Typical beam parameters:
 - \(I_e = 200 \text{ mA} \), \(U_e = 3.5 \text{ kV} \), \(L_e = 0.8 \text{ m} \)
 - Current density: \(~160 \text{ A/cm}^2~\)
 - Beam diameter: \(~0.4-0.5 \text{ mm}~\)
- Ramp EBIS platform voltage decouples ISOL part and LINAC
EBIT

* Magnetic field 7 T
* Typical beam parameter:
 \[I_e = 360 \text{ mA}, \quad U_e = 150 \text{ kV}, \quad L_e = 0.04 \text{ m} \]
* Current density: \(\sim 6000 \text{ A/cm}^2 \)
 beam diameter \(\sim 45 \mu\text{m} \)
* Scanning of electron beam energy
* X-ray spectrometer
* External ion injection from MEVVA possible

Oliver Kester, TITAN workshop, 10.06.2005
* Maximum magnetic field 5 T
* $I_e = 3\ A$, $U_e = 25\ kV$, $L_e = 0.8\ m$
* Current density adjustable: $\sim 100-1000\ A/cm^2$

* New gun, new structure, new collector \rightarrow new EBIS!
* Non suppressed collector \rightarrow 30 kW can be dissipated

Oliver Kester, TITAN workshop, 10.06.2005
spectrometer, 2. experiment

cup, channeltron, experiment?

MPS

TOF

MAXEBIS

deflector

Ba-source

Oliver Kester, TITAN workshop, 10.06.2005
Tasks 1: Manipulation of charge state distribution

Breeding at shell closures (LMU/GSI, ISOLDE, MPI-K)

Goal: efficiency in one charge state >50%

Example:

Pb$^{54+}$ at 5050 eV beam energy

Radiative recombination?
Tasks 2: Exploration of DR

DR resonant processes for manipulation of the charge state distribution and isobaric purification (ISOLDE, MPI-K)

Exploration → MPI-K
→ ISOLDE

Manipulation of e-beam energy (space charge!)

DR resonances of O-like to He-like Ba

KLL Barium
140 mA current
dump 5 min, 7.5 kV in DT
EG platform 12.1-16.6 kV
shallow trap

54+, 53+52+, 51+, 50+, 49+, 48+

Oliver Kester, TITAN workshop, 10.06.2005
Beam injection into a partially neutralized electron beam (LMU/GSI, ISOLDE)

Tasks 3: Coulomb target

typical time constants:

\[m_i = 200 \text{ u (injected)}, \ q_i = 1 \]
\[m_j = 20 \text{ u (target)}, \ q_j = 6 \]
\[E_i = 10 \text{ eV}, \ U_e = 10000 \text{ eV} \]
\[j_e = 1000 \text{ A/cm}^2 \]
\[t_{\text{tof}} \sim 6 \times 10^{-4} \text{ sec (1m EBIS/T)} \]
\[t_{\text{ion}} \sim 10^{-6} \text{ sec (1+\rightarrow2+)} \]
\[t_{\text{coll}} \sim 5 \times 10^{-6} \text{ sec} \]
Cooling of highly charged ions (evaporative cooling)

• Improvement of the beam emittance
• Improvement of beam purification of radioactive ions from contamination (all participants)

- collisions with beam electrons heat up ion ensemble
- light, less tightly trapped ions (e.g. Ne\(^{10+}\)) evaporate removing thermal energy

- heavy, highly charged ions (e.g. Ba\(^{53+}\)) remain trapped
Energy exchange via elastic collision
→ concentration of highly charged ions towards beam axis
→ smaller emittance for highly charge ions
Cooling of highly charged ions

Dynamic barrier or rf-excitation!
Cooling of highly charged ions by removing low charged ions

Oliver Kester, TITAN workshop, 10.06.2005
Charge breeding is beneficial for post acceleration and experiments with highly charged ions.

Development towards:

- Short breeding times, good beam quality, high efficiency, high purity

Advanced charge breeding:

- Charge state manipulation
- Improved injection (Coulomb target)
- HCI cooling and improvement of beam emittance and purification
First TOF spectra with 200 mA

Rest gas spectrum (A/q = 2 in maximum)
$\text{t} = 500 \text{ ms}$
Large energy spread

Ar spectrum + rest gas
$\text{t} = 10 \text{ ms}$
Small energy spread

Oliver Kester, TITAN workshop, 10.06.2005