RFQ Status

Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005

RFQ Status & Testing of the RFQ

Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005

EBIT under testing at MPI-HD. to TRIUMF Oct. 2005.

Cooler trap for HCI (to be built in Manitoba, CFI grant received)

university of manitoba

RFQ Subject of today's presentation

TITAN platform finished at ISAC

W McGill

Wien filter

(R=500)

Penning trap magnet ordered (del. Oct. 2005)

The TITAN system is under construction and will be operational for mass measurements at ISAC/TRIUMF in 2006. Isotopes with $T_{1/2} \approx 10 \text{ ms}$ $\delta \text{m/m} < 1.10^{-8}$

Why do we need a cooler and buncher?

Why do we need a cooler and buncher?

EBIT cannot accept a continuous beam

Low emittance needed in order to traverse magnetic field efficiently

Therefore, we need to cool and bunch the ISAC beam

Why do we need an RFQ?

- Thermalization in three dimensions stops the ions in the gas
- Ions will disperse radially due to scattering of forward momentum
- Use RFQ ion trap to provide a force to counteract the dispersion
- Segmenting the RFQ allows for the application of a longitudinal field

How does the RFQ work?

 Standard quadrupolar geometry focuses in one direction and defocuses in the other

 $\phi = V \frac{(x^2 - y^2)}{r_0^2}$

 $E_x = -\frac{2V}{r_0^2}x, \ E_y = \frac{2V}{r_0^2}y$

How does the RFQ work?

However, it has long been known that by placing a series of quadrupoles together a net focusing force can be obtained e.g. in a quad triplet

How does the RFQ work?

Can use RF- potential to alternate the orientation of the focusing and defocusing directions Net focusing force is then independent of ions longitudinal velocity Form of periodic potential somewhat arbitrary, see: J. A. Richards et al., Int. J. Mass Spectrom. and Ion Phys. 12, 339 (1973).

How are beam bunches formed?

Sy segmenting the structure we can also apply a longitudinal field and hence create bunches

To EB IT

The RFQ Design

Properties of the RFQ from First Order Model

Meissner equations determine ions motion in square-wave-driven trap:

$$\frac{\partial^2 x}{\partial \varsigma^2} - 2qx = 0, \quad \frac{\partial^2 y}{\partial \varsigma^2} + 2qy = 0, \quad \varsigma = \frac{\omega t}{2}.$$

Analytic solution shows a simple harmonic macro-motion perturbed by a coherent micro-motion

As q increases so does the amplitude of the micro-motion until at q = 0.712 the motion becomes unbound

Properties of the RFQ from First Order Model

In Phase Space

 Micro-motion distorts ideal harmonic ellipse
 Acceptance defined as area of harmonic ellipse whose maximum distorted amplitude = r₀

q = 0.3

Temperature

- Micro-motion is coherent and therefore doesn't contribute to the temperature of the ions in the trap
- Temperature of an ion cloud in a harmonic potential can be defined in terms of the standard deviation in position and momentum space:

$$\sigma_{u} = \frac{1}{\omega_{s}} \sqrt{\frac{kT}{m}}, \ \sigma_{v} = \sqrt{mkT}.$$

• Can use information from ellipses to convert from σ_x and σ_v as a function of phase/time to σ_x -SHM and σ_v -SHM and hence define temperature

Space-Charge Limit

- Can use amplitude of harmonic motion combined with secular frequency to define the depth of the psuedopotential
- Use simple model for the beam to get an idea of the space charge limit
- In continuous mode consider beam to be an infinitely long cylinder
- In bunched mode consider bunch to be a perfect sphere

 $=-\frac{m}{ze}\omega_s^2 r_{\max}$ $E_{ps} =$

For Cylinder:

 $E_{sc} = \frac{\lambda}{2\pi\varepsilon_0 r}, \ \lambda = \frac{I}{V}$

For Sphere:

 $=\frac{\mathcal{L}}{4\pi\epsilon_{e}R^{2}}$ E_{sc} :

Space Charge Limit

♦ In continuous mode $I_{max} \approx 2.3 \ \mu$ A, @ q = 0.49 ♦ In bunched mode $Q_{max} \approx 3.2 \ p$ C, @ q = 0.39

Status of Simulations

- Used SIMION to define geometry and simulate electric fields
- Initially used viscous drag model to simulate ion ranges & cooling times
- User program developed that contains a Monte Carlo algorithm to simulate the ion interaction with the buffer gas
- Uses realistic ion-atom interaction potentials
 Runs in SIMION or separately in C
- Tested by using to recreate experimental results for the mobility of ions in the gas

Status of Simulations

Lithium in helium perfect agreement Cesium in helium some small discrepancies ♦ Li⁺-He interaction potential well known with ab-initio calculations possible Cs⁺-He simple (8,6,4) potential used. Much disagreement about the proper form in the

literature

Modeling Buffer-gas Cooling: Monte Carlo

 Simulation of cooling of Cs⁺ in 2x10⁻² mbar of He
 Segmented into 24 pieces with longitudinal potential previously shown
 Transfer of beam with

98% efficiency

Cooling time approx. 2 x longer than that from simple drag model

Modeling Buffer-gas Cooling: **Monte Carlo** 0.3

- Ions initialized in trap with T = 800 K
- Cooled for 500 µs and then data recorded in 0.02 µs intervals for 10 µs
- Plot of temperature as a function of q shows the effects of RF-heating
- Space-charge not yet included so represents a minimum possible temperature

Extraction Methods

 In absence of buffer-gas expect all bunches to have the same longitudinal and transverse emittances
 Eirst extraction method releases ions with a small

First extraction method releases ions with a small energy spread and large time of flight spread

Second method reduces time of flight spread but increases energy spread

Simulated Beam Properties

ΔV_{22} (V)	ΔV_{24} (V)	$\varepsilon_{t_{rms}}$	$\varepsilon_{l_{rms}}$	$\sigma_{ti} \ (\mu s)$	σ_{en} (eV)
		$(\pi \text{ mm mrad})$	$(eV/\mu s)$		
0	-30	3.3 ± 0.3	4.7 ± 0.2	1.13	1.04
0	-60	4.2 ± 0.1	7.4 ± 0.3	0.78	2.42
30	-30	3.8 ± 0.2	1.3 ± 0.1	0.28	1.31
60	-60	3.6 ± 0.1	$1.4{\pm}0.1$	0.15	2.48
500	-500	4.8 ± 0.2	1.8 ± 0.1	0.06	10.20

$$\varepsilon_{rms} = 4\sqrt{\langle x^2 \rangle \langle \dot{x}^2 \rangle - \langle x \dot{x} \rangle^2}$$

- Cooling times on the order of 1-2 ms
 Buffer-gas heats beam so emittances not constant
- Kicking the ions hard out of the trap reduces time of flight spread and increases energy spread

• $\varepsilon_{\rm rms} = 3 \pi$ mm mrad @ 2.5 kV • Doesn't include space charge which

becomes important for $>10^6$ ions in the trap

The Square-Wave RF Generator

 $q = \frac{4zeV}{m\omega^2 r_0^2}$, Sine-Wave q<0.908 Stable, q≈0.4 best. Square-Wave q<0.712 Stable, q≈0.3 best.

7 ≤ m ≤ 235 u, 0.4 ≤ f ≤ 3 MHz @ 400 V_{pp}, r₀ = 10 mm
First system in use: V_{pp} = 400 V, f = 1 MHz (m ≥ 65)
Second version designed and tested: V_{pp} = 600 V, f = 3 MHz

The Square-Wave Driver

Test Setup

The purpose of the test setup is to provide a test ion beam with properties similar to the ISAC beam

Allows us to optimize the RFQ performance before installation at ISAC

Injection Optics

Extraction Optics

Experimental Setup

Experimental Setup

Experimental Setup: Injection

Experimental Setup: Injection

Beam through four-way switch with approx.
 100% efficiency
 Beam into RFQ with approx. 95% efficiency

Experimental Setup: RFQ

Installed and Square-Wave successfully applied to the rods

Beam passed through RFQ and detected at the RFQ exit without gas with 30% efficiency

Experimental Setup: Extraction

Experimental Setup: Extraction

Extraction optics installed **MOSFET** switch developed at McGill used to switch RFQ dc bias Belhke 60 kV switch used to pulse drift tube Drift tube pulser underway tested and ready for instalation

Commissioning the RFQ

- Transverse emittance rig has been built and is being tested.
- Time-of-flight information from MCP couple either directly to scope or through MCA

Longitudinal energy spread?

Summary and Outlook

- Detailed simulations of cooling process in a squarewave driven RFQ carried out
- Based on simulations system designed and built
- Square-wave driver capable of driving large capacitive loads at high voltage and high frequency developed and tested
- Testing of the system underway. Beam has been extracted from the RFQ and detected in DC mode.
- TITAN platform now installed in proton hall
- RFQ will be installed ready for the delivery of the EBIT at the end of the summer

Thanks

- Jens Dilling, Joe Vaz, Laura Blomeley and the rest of the TITAN group.
 - Co-op Students: Robert Cussons, Ori Hadary, Amar Kamdar, George Yuan.
 - Triumf Support: M. Good, H. Sprenger, M. McDonald, R. Dube, R. Baartman, Controls Group, Design Office, KICKER Group, Machine Shop, Vacuum Group.
- For more information see my thesis at: www.triumf.ca/titan/group