Preparations for K- Beamtime:

Tests and setup for K from off line ion source

```
Do we need spare parts?
```

Switch to K- source (Please take pictures!)

```
Optimization of EBIT injection with ^{39}K 4 \text{ T} \leftrightarrow 5 \text{ T}
```

Investigation of TOF resolution after EBIT extraction:

```
can we resolve K^{+9} from C^{3+/}O^{4+} and N^{3+}?
if not x) use ^{38}K^{4+} instead or
x) dipole cleaning (possibly EBIT and MPET) of C^{3+/}O^{4+} and N^{3+}
```

```
Investigation of dipole cleaning with HCI (EBIT) separate C^{3+\prime}O^{4+} and N^{3+}
```

Optimization of charge breeding with 39 K charge state q = 9 / q = 4

Optimization of transfer and injection of ³⁹K^{+q} into MPET

```
Investigation of dipole cleaning with HCI (MPET) separate C<sup>3+/</sup>O<sup>4+</sup> is it feasible to clean isomer from ground state? effect of dipole cleaning on species of interest
```

Quantify charge exchange probability of ³⁹K^{+q} in MPET as a function of T

Determination of losses when storing ion bunches of ³⁹K⁺¹ for 1-5 s in EBIT (trapping potential should be low enough such that recoil kicks ³⁸Ar out of the trap)

Implementation of cycle to be used for ³⁸K- g.s (The ^{38m}K cycle is identical except for the storage of ions in the EBIT)

```
Injection of K into EBIT
Store ions in EBIT for 3-5 s
Charge breed K to q=9 / q = 4
(Dipole cleaning EBIT)
Transfer HCI to MPET
(Dipole cleaning MPET)
```

Confirm settings for ³⁹K⁺¹: to be used for neutron rich K; form RFQ directly into MPET

MPET Vacuum

- Restrictor after switchyard.
- Possibly remove PIPS if a leak is found there
- Test if moderate 'baking' (=increase outgas rate) of MPET vacuum chamber at ??? degree Celsius works: 'baking' with installed system or heat gun
- Bake MPET vacuum chamber at ??? for ??? days

Timeline for Preparations:

Week Jul 26 – Aug 1, 2009

Switch to K- source (Max, Mel, Aaron)

Week Aug 2 – 8 2009

Restrictor after switchyard (Mel)

Possibly remove PIPS if a leak is found there (Mel)

Optimization of EBIT injection with ³⁹K (Alain, Aaron)

Spare parts? (Max, Alain, Thomas)

Week Aug 9 – 15 2009

Investigation of TOF resolution after EBIT extraction (Alain, Max)

Determination of losses when storing ion bunches of ³⁹K⁺¹ for 1-5 s in EBIT (Thomas)

Test of moderate 'baking' of MPET vacuum chamber (Scott, Max)

Week Aug 16 – 22 2009 (Stephan is back at TRIUMF Aug 17, Paul F. arrives Aug 21)

Investigation of dipole cleaning with HCI in EBIT (Alain, Aaron)

Optimization of charge breeding with 39 K charge state q = 9 / q = 4 (Alain, Max,

Stephan)

DO NOT CHANGE MAGNETIC FIELD starting Aug 20 (b-NMR)

Week Aug 23 – 29 2009

Optimization of transfer and injection of ³⁹K^{+q} into MPET (Alain, Max, Stephan) Investigation of dipole cleaning with HCI in MPET (Paul F., Stephan)

Week Aug 30 – Sep 5, 2009

Quantify charge exchange probability of ³⁹K^{+q} in MPET as a function of T (Paul F.,

Stepnan)

Confirm settings for ³⁹K⁺¹

Week Sep 6 – 12 2009

Implementation of cycle to be used for ³⁸K- g.s

Bake MPET vacuum chamber

Beamtime: Sep 11-14 2009

Beamtime

Try to perform resonances of highly charged 38 K and 38m K: if this is possible, the following systematic tests will be performed

- x) investigate development of both center frequencies with 5-4-3-2-1 ions per shot
- x) confirm that difference between ground state and isomer corresponds to 130.1(2) keV measured by Leach et al.
- x) measure f_c for ^{38}K without ^{38m}K

Measurement of ${}^{38}K^{+q}$ versus ${}^{39}K^{+q}$

(since we plan to measure ${}^{38}\text{Ar}^{+q}$ versus ${}^{39}\text{K}^{+q}$ with the same configuration at a later point in time, a detailed documentation will be essential; otherwise systematic effects won't cancel in the determination of the Q-value)

Measurement of neutron rich K isotopes (HCI and/or singly charged)