Precision mass cartography of the island of inversion

TITAN mass measurement of $29,30 \mathrm{Al}$

stephan ettenauer for the TITAN collaboration

ISAC Science Forum, Sept. 8th, 2010

Motivation for S1240

view on the island of inversion through $S_{2 n}$

$$
S_{2 n}=m(Z, N-2)+2 m_{n}-m(Z, N)
$$

Motivation for S1240

Motivation for S1240

Motivation for S1240

Motivation for S1240

S1240

27 Al	28 Al	29 Al	30 Al	31 Al	32 Al	33 Al	34 Al	35 Al
26 Mg	27 Mg	28 Mg	29 Mg	30 Mg	31 Mg	32 Mg	33 Mg	34 Mg
25 Na	26 Na	27 Na	28 Na	29 Na	30 Na	31 Na	32 Na	83 Na
24 Ne	25 Ne	26 Ne	27 Ne	28 Ne	29 Ne	30 Ne	31 Ne	8 Ne
23 F	24 F	25 F	26 F	27 F	28 F	29 F	30 F	31 F
220	230	240	250	260	270	280		

TITAN: Sept. '09:
 MPET Vacuum for HCI

$$
{ }^{39} \mathrm{~K}^{4+} @ 5.7 \cdot 10^{-10} \text { Torr }
$$

T_{rf} $[\mathrm{ms}]$	scans	Δv $[\mathrm{~Hz}]$	$\exp \Delta v$ $[\mathrm{~Hz}]$
8	100	2.607	
197	200	0.096	0.074
497	199^{*}	$0.094<$	0.030

=> for futher HCI: better vacuum required
m"w MPET baking

TRIUMF
 $\xrightarrow{\text { ISAC }}$
 Shorts after baking

Advantages:

- 2 independent detection systems
- detector repair without venting MPET
- independent baking possible

TRIUMF

- before beamtime
- ${ }^{39} \mathrm{~K}$ vs ${ }^{23} \mathrm{Na}$
- literature: new FSU data

$$
R=R_{\text {meas }}\left(1+(\Delta R / R)_{\text {mds }} \Delta A\right)
$$

mass dep. shift:
0.8(2) keV
over
$\Delta A=16$

mume
 $\xrightarrow{\text { ISAC }}$
 Accuracy check II:

- ${ }^{27}$ Al from ISAC
- use ${ }^{27} \mathrm{Al}$ to optimize trapping parameters and scale from there for radioactives
- reference: ${ }^{23} \mathrm{Na}$

${ }^{29} \mathrm{Al}$ complete data:

${ }^{29} \mathrm{Al}$ complete data:

${ }^{29} \mathrm{Al}$ complete data:

${ }^{30} \mathrm{Al}$

${ }^{30} \mathrm{Al}$

- $30,000 \mathrm{ions} / \mathrm{sec}$ at the channeltron but hardly anything at MPET MCP (ca. 400 counts in I/2h)

Transfer Efficiency

normal condition:

$\mathrm{T}_{1 / 2}=24 \mathrm{~ms}$
~30-300 ions/s
terrible transfer efficiency through RFQ:

- 'chemistry' $\mathrm{He} \leftrightarrow \mathrm{Al}$?
- low pressure in gas bottle $=>$ more contamination in gas
- RF problem
- needs further investigation \& repair !!!

TRIUMF
 ${ }^{28} \mathrm{Na}$

- 2,000 ions/sec at the channeltron
- 380 ions in $2 \mathrm{I} / 2 \mathrm{~h}$
=> we were able to trap
- but no (real) reasonacne

Info :

lons: 382
MCA : [151, 351]
O. error 0.5 [$\mu \mathrm{s}$] Mean TOF 51.4 [$\mu \mathrm{s}$]

Rec. time error:
8.814 [$\mu \mathrm{s}$]

Conclusion

- after baking, repair \& upgrade: MPET online again
- but serious problems with RFQ transfer efficiency
- mass of ${ }^{29,30} \mathrm{Al}$ measured

TITAN collaboration

* The TITAN Group: Jens Dilling, Paul Delheij, Gerald Gwinner, Melvin Good, Alain Lapierre, David Lunney, Mathew Pearson, Ryan Ringle, Maxime Brodeur, Ernesto Mané, Vladimir Ryjkov, Martin C. Simon, Thomas Brunner, Usman Chowdhury, Benjamin Eberhart, Stephan Ettenauer, Aaron Gallant, Vanessa Simon, Mathew Smith
* TRIUMF Staff: Pierre Bricault, Ames Freidhelm, Jens Lassen, Marik Dombsky, Rolf Kietel, Don Dale, Hubert Hui, Kevin Langton, Mike McDonald, Raymond Dubé, Tim Stanford, Stuart Austin, Zlatko Bjelic, Daniel Rowbotham, Daryl Bishop

And the rest of the TITAN collaboration....

U. of Manitoba	CNRS-
McGill U.	
Muenster U., of Windsor	
Max Plank Inst. of Heidelberg	Colorado School of Mines
GANIL CANIL	TRIUMF
CABC	

