

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

(some) big questions for nucl. structure

nuclear matrix elements & weak interaction • 0νββ-decay & neutrino masses

shell evolution

 (dis-)appearance of magic numbers

limits of nuclear existence

- island of stability for super- heavies
- location of drip-lines
 - threshold phenomena (e.g. halos, ...)

⇒ challenges for understanding of nuclear forces & models

J=28

• V_{ud} of the CKM matrix

proton

time

(some) big questions for nucl. structure

nuclear matrix elements & weak interaction

⇒ challenges for understanding of nuclear forces & models

the big challenges

resolution

high energy: quarks resolved

RTRIUMF

separation of scales

work only with relevant d.o.f:

- ➡ effective field theory
- renormalization group

typical momenta in nuclei ~m_π

bridge QCD to nuclear forces

chiral EFT

Hamiltonian:

- use p,n, pions
- most general H consistent with QCD

example for renormalization: Vlow,k

origin of 3-body forces

• nucleons: composite particles

Additive tidal forces

induced 3N forces

xEFT non-renormalizable → at each order: counter terms + <u>new int</u> → new free coupling constants off is 'physical' (=true separat

TRIUMF

benchmark for EFTs: halo nuclei

May 13, 2011

charge radius

charge radius

RTRIUMF

ISAC@ TRIUMF

Rare Isotopes at TITAN for Nuclear Structure

¹¹Li: charge radius

isotope shifts 7Li-ALi:

• 2s→3s

RIUMF

• reference $r_c(^7Li) = 2.39(3)$ fm

At. Data Nucl. Data Tables 14, 479 (1974)

R. Sanchez et al., PRL 96, 033002 (2006)

 $r_{c} (^{11}Li) = 2.423(17)(30) \text{ fm}$ reference r_{c}

 $\delta \nu_{A,A'} = \delta^{\mathrm{MS}}_{A,A'} + K_{\mathrm{FS}} \delta < r_c^2 >_{A,A'}$

mass shifts

Isotopes	$2^2 P_{1/2} - 2^2 S$	$2^2 P_{3/2} - 2^2 S$	$3^{2}S - 2^{2}S$
⁷ Li - ⁶ Li	-10532.111(6)	-10532.506(6)	-11452.821(2)
⁷ Li – ⁸ Li	7940.627(5)	7940.925(5)	8634.989(2)
${}^{7}\text{Li} - {}^{9}\text{Li}$	14098.840(14)	14 099.369(14)	15331.799(13)
7 Li $- {}^{11}$ Li a	23 082.642(24)	23 083.493(24)	25 101.470(22)
$^{9}Be - ^{7}Be$	-49 225.765(19)	-49231.814(19)	-48514.03(2)
${}^{9}\text{Be} - {}^{10}\text{Be}$	17 310.44(6)	17 312.57(6)	17 060.56(6)
${}^{9}\text{Be} - {}^{11}\text{Be}$	31 560.01(6)	31 563.89(6)	31 104.60(6)

Z.-C. Yan et al., PRL 100, 243002 (2008)

M. Puchalski et al., PRL 97,133001 (2006)

¹¹Li: charge radius

isotope shifts 7Li-ALi:

• $2s \rightarrow 3s$

RIUMF

• reference $r_c(^7Li) = 2.39(3)$ fm

At. Data Nucl. Data Tables 14, 479 (1974)

PL^TS

 $\delta \nu_{A,A'} = \delta^{\mathrm{MS}}_{A,A'} + K_{\mathrm{FS}} \delta < r_c^2 >_{A,A'}$

mass shifts

TITAN

measurement principle

This section shortly introduces the various electrodes form

Precise & Accurate

line width (FWHM): $\Delta \nu \approx 1/T_{rf}$

 \Rightarrow resolution:

$$R = \frac{m}{\Delta m} = \frac{\nu_c}{\Delta \nu_c} \approx \nu_c T_{rf}$$
$$\approx \frac{q B T_{rf}}{2\pi m}$$

 \Rightarrow even for $T_{rf} \sim 10 ms$

$$(\delta m/m)_{\rm stat} < 10^{-7}$$

- exact theoretical description
 - L.S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986) G. Bollen et al., J. Appl. Phys. 88, 4355 (1990) M. König et al., Int. J. Mass Spect. 142, 95 (1995)
 - M. Kretzschmarr, Int. J. Mass Spect. 246, 122 (2007)
- even for non-ideal traps

G. Bollen et al., J. Appl. Phys. 88, 4355 (1990)

'protected' by invariance theorem $\omega_c^2 = \omega_+^2 + \omega_-^2 + \omega_z^2$ G. Gabrielse, PRL 102, 172501 (2009)

• off-line tests with stables

 \Rightarrow control over systematics

mass of ¹¹Li

Reference	Mass [u]
AME'03	11.043 798(21)
MISTRAL 2005	11.043 715 7(54)
TITAN 2007	11.043 723 61 (69)

$$r_c$$
 (¹¹Li) = 2.427(16)(30) fm

eliminates mass as source of uncertainty!

(this experiment, 2004)

Theory

- (S. C. Pieper 2001/2002)
- Stochastic Variational Multi Cluster (Y. Suzuki, 2002)
- Fermionic Molecular Dynamics (T. Neff, 2005)
-o.... Dynamic Correlation Model (M. Tomaselli, 2002)

M. Smith et al., PRL 101, 202501 (2008)

other halos: ⁶He and ⁸He

Laser spectroscopy

- Argonne Lab / GANIL
- LS in MOT

			all in l	MHz
	⁶ He		⁸ He	
	Value	Error	Value	Error
Statistical				
Photon counting		0.008		0.032
Probing laser alignment		0.002		0.012
Reference laser drift		0.002		0.024
Systematic				
Probing power shift				0.015
Zeeman shift		0.030		0.045
Nuclear mass		0.015		0.074
Corrections	7			
Recoil effect	0.110	0.000	0.165	0.000
Nuclear polarization	-0.014	0.003	-0.002	0.001
$\delta \nu_{A,4}^{\rm FS}$ combined	-1.478	0.035	-0.918	0.097

mass: dominating uncertainty

P. Mueller et al., PRL 99, 252501 (2007)

Mass measurement @ TITAN

Isotope	mass (× 10^6 u)	M.E. (keV)
⁶ He	6 018 885.883(70)	17 592.087(65)
${}^{8}\text{He}(1^{st})$	8.033 935 669(722)	31 610.872(673)
8 He (2 nd)	8.033 934 410(128)	31 609.700(120)
⁸ He (average)	8.033 934 449(126)	31 609.736(118)

V. L. Ryjkov et al., PRL 101, 012501 (2008)

M. Brodeur et al., PRL in prep.

⁶He and ⁸He: comparison to theory

E. Caurier et al, PRC 73, 021302(R), (2006); P. Navrátil et al., J. Phys. G: Nucl. Part. Phys. 36, 083101 (2009)

RTRIUMF

¹²Be: from halos to shell quenching

Shell Model of Atoms Shell Model of Nuclei

¹²Be: from halos to shell quenching

mass of ¹²Be

experimental challenges:

• $T_{1/2} = 24 \text{ ms} \Rightarrow$ never measured in a Penning trap before

TITAN: m.e.=25 078.0(2.1) keV

- → <u>halo</u>: confirms low $S_n^{eff} \Rightarrow possibility$ for halo-like structure
- ⇒ shell quenching: due to near-degeneracy of v(0p)² v(1s,0d)² conclusion from m(⁹⁻¹²Be) alone difficult
 S. Ettenauer et al., PRC 81, 024314 (2010)

RTRIUMF

magic numbers & n-drip line

RTRIUMF

magic numbers & n-drip line

new discoveries at the drip-line

Rare Isotopes at TITAN for Nuclear Structure

3N-forces and Ca-isotopes

- correctly describes ⁴⁸Ca as a magic nucleus
- predicts shell closure at N = 34 (⁵⁴Ca)

J. D. Holt et al., arXiv:1009.5984

TITAN: towards N=34 with K & Ca

Weak Interaction and Nuclear Matrix Elements

interaction Lagrangian quarks - W⁺ and W⁻

$$g \,\overline{u}_{Li} \,\gamma^{\mu} d_{Li} W_{\mu}^{+} + h.c. = g \,\overline{u'}_{Li} U_{L} D_{L}^{+} \gamma^{\mu} d'_{Li} W_{\mu}^{+}$$

$$V = U_{L} D_{L}^{+} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \\ \end{pmatrix} \begin{array}{c} \text{Cabibbo-Kobayashi} \\ -\text{Maskawa matrix} \end{array} \rightarrow \text{test unitarity!}$$

Vud

interaction Lagrangian quarks - W⁺ and W⁻

$$g \overline{u}_{Li} \gamma^{\mu} d_{Li} W^{+}_{\mu} + h.c. = g \overline{u'}_{Li} U_{L} D^{+}_{L} \gamma^{\mu} d'_{Li} W^{+}_{\mu}$$

$$V = U_{L} D^{+}_{L} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \\ \end{pmatrix}$$
Cabibbo-Kobayashi
-Maskawa matrix \rightarrow test unitarity!

Rare Isotopes at TITAN for Nuclear Structure

RTRIUMF

superallowed $0^+ \rightarrow 0^+$ beta decays

 \Rightarrow superallowed 0⁺ \rightarrow 0⁺ decays most precise way to extract V_{ud}

due to $\Delta J = \Delta T = \Delta L = \Delta S = 0$:

- · pure Fermi decay (only vector part)
- transition between isobaric analog states
- only total Isospin Ladder Operator T[±] alters wave-function

$$\Rightarrow \text{ for T = 1: matrix element: } \left|\overline{M}\right|^2 = \frac{G_V^2}{g^2} \left|M(F)\right|^2 = \frac{2G_V^2}{g^2}$$

K ... numerical constantexperimental inputt ... "partial halflife(dep on. BR and T_{1/2})

f ... phase space integral (dep. on Q-value)

 $ft = \frac{K}{2G_{T}^2} = \text{const}$

RTRIUMF

superallowed $0^+ \rightarrow 0^+$ beta decays

 \Rightarrow superallowed 0⁺ \rightarrow 0⁺ decays most precise way to extract V_{ud}

due to $\Delta J = \Delta T = \Delta L = \Delta S = 0$:

- · pure Fermi decay (only vector part)
- transition between isobaric analog states
- only total Isospin Ladder Operator T[±] alters wave-function

$$\Rightarrow \text{ for T = 1: matrix element: } \left|\overline{M}\right|^2 = \frac{G_V^2}{g^2} \left|M(F)\right|^2 = \frac{2G_V^2}{g^2}$$

- M. Mukherjee et al., PRL 93, 150801(2004)
- A. Kellerbauer et al., PRL 93, 072502 (2004)
- G. Savard et al., PRL 95, 102501 (2005)
- G. Bollen et al., PRL 96, 152501 (2006)
- T. Eronen et al., PRL 97, 232501 (2006); PRL100, 132502 (2008); PRL 103, 252501 (2009)

corrected Ft-values

$$Ft = ft(1+\delta_R)(1+\delta_{NS} - \delta_C) = \frac{K}{2G_V^2(1+\Delta_R^V)} = \text{const (assuming CVC)}$$

 Δ^{V}_{R} ... transition indep.

 δ_{R} and δ_{NS} transition dep.

 δ_c ... isospin symmetry breaking (tans. dep.)

Corrections: small (about a few %), BUT generally dominating uncertainty

discrepancies between different models

- · Woods-Saxon
- · Hartree-Fock (2 different calculations)
- · perturbation theory
- · self-consistent RPA
- <u>NEW: DFT</u>

corrected Ft-values

$$Ft = ft(1+\delta_R)(1+\delta_{NS} - \delta_C) = \frac{K}{2G_V^2(1+\Delta_R^V)} = \text{const (assuming CVC)}$$

 $\Delta^{V_{R}}$... transition indep.

 δ_{R} and δ_{NS} transition dep.

 δ_c ... isospin symmetry breaking (tans. dep.)

Corrections: small (about a few %), BUT generally dominating uncertainty

discrepancies between different models

- · Woods-Saxon
- · Hartree-Fock (2 different calculations)
- · perturbation theory
- · self-consistent RPA

• **NEW: DFT** *W. Satuła et al., PRL 106, 132502 (2011)*

experimental "tests" of δ_c

extrapolate to charge-independent limit $\propto Z^2$ subtract non Z² components from models

of T=1

experimental "tests" of δ_{c}

extrapolate to charge-independent limit ∝Z²
subtract non Z² components from models

TRIUMF proposal S1242

RTRIUMF

δ_c and the charge radius of ^{74}Rb

Q-value for ⁷⁴Rb

direct mass measuremnts in Penning trap:

- highest precision
- ISOLTRAP @ CERN

A. Kellerbauer et al., PRL 93, 072502 (2004) PRC 76, 045504 (2007)

Nuclide	D _{exp} (keV)			
	2000	2002	2003	mean
⁶⁴ Zn ⁷¹ Ga ⁷⁴ Ga ⁷⁴ Rb	-68 047(21) -51 905(18) ^b	-65 998.6(7.8) -70 137.5(1.2) -51 917.3(4.8) ^c	-68 019(32) -51 910.7(7.0) ^c	$\begin{array}{r} -65\ 998.6(7.8) \\ -70\ 137.5(1.2) \\ -68\ 041(18)^{a} \\ -51\ 914.7(3.9) \end{array}$

limitation due to T_{1/2}

 $\frac{\delta m}{m} \propto \frac{m}{q} \frac{1}{BTN^{1/2}}$

- to improve precision further: HCI
- TITAN only online facility to use HCI

radioactive HCI @ TITAN

confinement:

RTRIUMF

- axial by electrostatic field
- radial by electron beam + B- field

B-field (up to 6 T) compresses e⁻ beam

 $\Rightarrow e^{-}$ density up to 10 000 A/cm²

 \Rightarrow increased ionization rate

- efficient
- \cdot fast

confinement:

- axial by electrostatic field
- radial by electron beam + B- field

B-field (up to 6 T) compresses e⁻ beam

 $\Rightarrow e^{-}$ density up to 10 000 A/cm²

 \Rightarrow increased ionization rate

- efficient
- \cdot fast

confinement:

RTRIUMF

- axial by electrostatic field
- radial by electron beam + B- field

B-field (up to 6 T) compresses e⁻ beam

 $\Rightarrow e^{-}$ density up to 10 000 A/cm²

 \Rightarrow increased ionization rate

- efficient
- \cdot fast

confinement:

TRIUMF

- axial by electrostatic field
- radial by electron beam + B- field

B-field (up to 6 T) compresses e⁻ beam

 $\Rightarrow e^{-}$ density up to 10 000 A/cm²

 \Rightarrow increased ionization rate

- efficient
- \cdot fast

confinement:

RTRIUMF

- axial by electrostatic field
- radial by electron beam + B- field

B-field (up to 6 T) compresses e⁻ beam

 $\Rightarrow e^{-}$ density up to 10 000 A/cm²

 \Rightarrow increased ionization rate

- · efficient
- \cdot fast

TITAN'S EBIT

X-ray spectroscopy:

diagnostics tool for charge breeding
 EC-BR measurement (discussed later)

Design values

Max. e-beam energy	~70 keV [demonstr.: 25 keV]	
Max. e-beam current	500 mA [demonstr.: 400 mA]	
Max. magnetic field strength	6 T	
Beam diameter (FWHM)	~40 µm+	
Electron beam current density	~10 ⁴ A/cm ²	
Number of trapped ions	106-108 (depending on charge)	
Beam energy spread	~50 eV	
Highest charge state	~ He-like U, q=90+	

Rare Isotopes at TITAN for Nuclear Structure

TRIUMF

Rare Isotopes at TITAN for Nuclear Structure

31

36

Charge Breeding of ⁷⁵Rb

charge bred residual gas

charge breeding time

⁷⁶Rb

- · very first mass measurement of radioactive HCIs
- stat. uncertainty of < 300 eV achieved in a few hours

Ramsey excitation of ⁷⁵Rb

40

⁷⁴Rb

- power outage during ⁷⁴Rb => reconditioning of EBIT => lower efficiency
- => "easy" improvement next time

S. Ettenauer et al., in preparation

HCI and Isomers

HCI and Isomers

EC-BR measurements and 2vββ Matrix Elements

neutrino oscillation experiments:

- neutrino massive
- · BUT: no information about absolute mass scale & type of mass

absolute scale:

RIUMF

- \cdot electron endpoint energy in beta decay
- · astrophysical limit

EC-BR measurements and 2vββ Matrix Elements

neutrino oscillation experiments:

- neutrino massive
- · BUT: no information about absolute mass scale & type of mass

absolute scale:

RIUMF

- · electron endpoint energy in beta decay
- · astrophysical limit

Nuclear Matrix Element

theoretical models:

- · proton-neutron Quasiparticle Random Phase Approximation (pnQRPA)
- nuclear shell model
- interacting boson model

• <u>!! NEW: χEFT !!</u> J. Menéndez et al., arXiv:1103.3622

Nuclear Matrix Element

Nuclear Matrix Element

New Approach for ECBR

EBIT in Penning trap mode confinement:

- · axial by electrostatic field
- · B-field (6 T)

RIUMF

in-trap spectroscopy:

- strong B field spatial separation of X-ray and β-particles
- segmented trapping electrodes → close placement of X-ray detectors
- extract ions after observation time low background
- β-dectector: anti-coincidence

no β - background no absorption in backing material

J. Dilling et al., Can. J. Phys. 85, 57 (2007) T. Brunner et al., NIM B 266, 4643 (2008)

Detector Positions

Proof-of-Principle

Proof-of-Principle

S. Ettenauer et al., AIP Conf. Proc. 1182(2009)100

Proof-of-Principle

S. Ettenauer et al., AIP Conf. Proc. 1182(2009)100

Summary & Conclusions

- Halo nuclei
 - benchmark for theory: (3N-) forces & methods
 - mass essential, but experimentally challenging: ^{6,8}He, ¹¹Li, ^{11,12}Be @ TITAN
- new magic numbers
 - again importance of 3N-forces
 - TITAN: towards N=34
- δ_c in NME for V_{ud} from superallowed β decays
 - exp. support to theory: e.g. charge radius from LS (74Rb)
 - TITAN: first online mass measurements with HCI
- NME for $0\nu\beta\beta$ -decays
 - in-trap decay spectroscopy TITAN: new approach to measure EC-BR
- χEFT: consistent framework of nucl. forces (+ bridges to QCD)
- use of these nucl. forces in various methods all over nuclear chart

Thank you! Merci!

- The TITAN Group: Jens Dilling, Paul Delheij, Gerald Gwinner, Melvin Good, Alain Lapierre, David Lunney, Mathew Pearson, Ryan Ringle, Corina Andreoiu, Maxime Brodeur, Ankur Chaudhuri, Alexander Grossheim, Ernesto Mané, Brad Schultz, Martin C. Simon, Thomas Brunner, Usman Chowdhury, Benjamin Eberhart, Stephan Ettenauer, Aaron Gallant, Vanessa Simon, Mathew Smith
- TRIUMF Staff: Pierre Bricault, Ames Friedhelm, Jens Lassen, Marik Dombsky, Peter Kunz, Rolf Kietel, Don Dale, Hubert Hui, Kevin Langton, Mike McDonald, Raymond Dubé, Tim Stanford, Stuart Austin, Zlatko Bjelic, Daniel Rowbotham, Daryl Bishop

RIUMF

TRIUMF Theory: Sonia Bacca, Petr Navratil, Achim Schwenk

And the rest of the TITAN collaboration....

4004 Wesbrook Mall | Vancouver BC | Canada V6T 2A3 | Tel 604.222.1047 | Fax 604.222.1074 | www.triumf.ca