

ISAC-TRIUMF

stephan ettenauer for the TITAN collaboration

Precision Mass Measurements of the Halo Candidates ³¹Ne and ²²C

S1283

SAP-EEC, July 2010

Halo Nuclei

extreme n/p ratios

Halo	n/p	
⁶ He	2	
⁸ He	3	
¹¹ Li	2.66	
¹⁴ Be	2.5	
¹⁹ C	2.17	
¹² C	1	

large radii

nucleons in classically forbidden region

but $R_{matter} \neq R_{charge}$

due to exotic features:

ideal test ground for nuclear structure theory

- \Rightarrow halos only for low orbital angular momentum (s and p)
- \Rightarrow generally not along the drip-line in heavier systems
- \Rightarrow halos limited to lighter masses ?

A. S. Jensen et al., Rev. Mod. Phys. 76, 215–261 (2004)

- \Rightarrow halos only for low orbital angular momentum (s and p)
- \Rightarrow generally not along the drip-line in heavier systems
- \Rightarrow halos limited to lighter masses ?

potential mechanisms for low l at heavier A:

- shell evolution
- deformation & halos
- halo formation adds extra stability ?

halos more common than expected?

reaction cross section of ²²C

- transmission experiment @ RIKEN
- ^{19,20,22}C on liquid H-target
- 40A MeV

	TABLE I.	Reaction cross sections (σ	$_R$) in millibarns.
A		σ_R	$\sigma_R^{ ext{calc.}}$ [22]
19		754(22)	758
20		791(34)	761
22		1338(274)	≥957

4

reaction cross section of ²²C

- transmission experiment @ RIKEN
- ^{19,20,22}C on liquid H-target
- 40A MeV

TABLE I. Reaction cross sections (σ_R) in millibarns.

reaction cross section of ²²C

Glauber calculation for ²²C

- FB approach
- finite-range treatment
- $\bullet \ vary \ S_{2n}$
- spectroscopic factor $(0d5/2)^2_{J=0} \leftrightarrow (1s_{1/2})^2_{J=0}$

$S_{2n}=420 \pm 920 \ keV$

- currently extrapolation in AME'03
- reaction data favours lower S_{2n}
- larger S_{2n}:
 validity of Glauber model at 40A MeV ?

K. Tanaka et al., PRL 104, 062701 (2010)

AME'03 prediction

6

Coulomb breakup of ³¹Ne (RIKEN)

$^{30}\text{Ne}(0^+) \otimes 1p_{3/2} \leftrightarrow ^{30}\text{Ne}(0^+) \otimes 0f_{7/2}$

[mb]	exp.	th.: p _{3/2}	th.: f _{7/2}
σ_{-1n} on ^{12}C	79(7)	96	26
σ -1n on ²⁰⁸ Pb	712(65)	1140	91

W. Horiuchi et al., Phys. Rev. C 81, 024606 (2010)

 $^{30}Ne(0^+) \otimes 1p_{3/2} \leftrightarrow ^{30}Ne(0^+) \otimes 0f_{7/2}$

n removal cross section at ~240A MeV:

[mb]	exp.	th.: p _{3/2}	th.: f _{7/2}	Sn[keV]
σ_{-1n} on ^{12}C	79(7)	96	26	
σ -1n on ²⁰⁸ Pb	712(65)	1140	91	0.33
		750		0.6

 \Rightarrow strong dependence on S_n

ISAGE Island of Inversion

TRIUMF

\Rightarrow ³¹Ne likely to be deformed

Deformation in 31Ne

- S_n<500 keV
 - I^{π}=3/2- and a p-wave neutron halo coming from either
 - [330 1/2] for 200 keV < S_n <500 keV or
 - [321 3/2] for 200 keV > S_n

I. Hamamoto, Phys. Rev. C 81, 021304(R) (2010) I. Hamamoto, Phys. Rev. C 76, 054319 (2007) I. Hamamoto, Phys. Rev. C 69, 041306(R) (2004) 10

determination of separation energies via direct mass measurement $S_n = m(Z, N - 1) + m_n - m(Z, N)$

Measurement @ TITAN

propose: mass measurement of 20,22 C and 31,30 Ne (30 Ne part of S1240) with $\delta m/m \approx 5 \cdot 10^{-7}$

<u>request:</u> 3 shifts + 1 shift setup for each case (12 shifts total) requires beam development (UO or UC for Ne, UO for C) ⇒ stage 1

- halo nuclei
 - ideal testing grounds for nuclear structure models
 - limited to lighter masses?
 - mechanism for halos in heavier systems?
- recent reaction measurements
 - ²²C in transmission experiment
 - ³¹N in Coulomb breakup
- in both cases: knowledge on S_{2n} limited
 - \Rightarrow interpretation of data ambiguous
 - \Rightarrow uncertainty in reaction models
- for ²²C: mass also benchmark for shell-model calculation
- <u>TITAN:</u>
 - fastest Penning trap spectrometer: $T_{1/2} < 10$ ms possible
 - measurements with low yields feasible
 - propose mass measurement of $^{20,22}C$ and $^{31,30}Ne$ to extract S_{2n} and S_n
 - request 12 shifts / stage 1

evidence for halo structures in heavier systems

S1283 collaboration

- TRIUME: J. Dilling, P. Delheij, M. Pearson, E. Mané, M. C. Simon, T. Brunner, U. Chowdhury, B. Eberhart, S. Ettenauer, A. Gallant, V. Simon
- ✤ CSNSM-IN2P3-CNRS: D. Lunney
- ✤ <u>University of Manitoba</u>: G. Gwinner
- * **NSCL:** M. Brodeur, R. Ringle

Backup Slides

Precise & Accurate

line width (FWHM):

ISAC

 $\Delta\nu\approx 1/T_{rf}$

\Rightarrow resolution:

TRIUMP

$$R = \frac{m}{\Delta m} = \frac{\nu_c}{\Delta \nu_c} \approx \nu_c T_{rf}$$
$$\approx \frac{q B T_{rf}}{2\pi m}$$

 \Rightarrow even for $T_{rf} \sim 10ms$

$$(\delta m/m)_{\rm stat} < 10^{-7}$$

accurate, but not precise

precise, but not accurate

• exact theoretical description

L.S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986) G. Bollen et al., J. Appl. Phys. 88, 4355 (1990) M. König et al., Int. J. Mass Spect. 142, 95 (1995) M. Kretzschmarr, Int. J. Mass Spect. 246, 122 (2007)

• even for non-ideal traps

G. Bollen et al., J. Appl. Phys. 88, 4355 (1990) G. Gabrielse, PRL 102, 172501 (2009)

- off-line tests with stables
- \Rightarrow control over systematics

<u>for TITAN:</u> < 5 ppb possible

Coulomb Breakup

- measured σ_{-1n} has contributions from Coulomb and from nuclear interaction
- 2 targets:
 - Pb (Z=82): Coulomb dominated
 - C: pure nuclear contribution
 - Γ scales nuclear part from C to Pb

$$\sigma_{-1n}(E1) = \sigma_{-1n}(Pb) - \Gamma \sigma_{-1n}(C)$$