
1

stephan ettenauer 
for the TITAN collaboration

Precision Mass 
Measurements of the Halo 
Candidates 31Ne and 22C

SAP-EEC, July 2010

S1283



Halo Nuclei
extreme n/p ratios large radii

but Rmatter  ≠   Rcharge

nucleons in classically 
forbidden region 

tiny separation energies

Halo n/p
 6He 2

 8He 3

11Li 2.66

14Be 2.5

19C 2.17

12C 1

due to exotic features:

ideal test ground for 
nuclear structure 

theory

2

11Li

6He
Li

He

I. Tanihata et al., PLB 202, 592 (1988)
A. Ozawa et al., NPA 691, 599 (2001)

8He

0 1 2 3 40

2

4

 S2N 

n p

exp. fall off



heavier halos?

3

Two-proton halo    

One-neutron halo    

Two-neutron halo   

One-proton halo    

Four-neutron halo   

Binary system

548 EUROPHYSICS LETTERS

Definitions. – Generally accepted definitions of halo states are not available and occur-
rence conditions are essentially also not investigated. The characterizing feature of a halo
state is its large spatial extent which requires closeness of a threshold and a corresponding
dominating cluster structure. To quantify the size of halo states, one needs to compare the
root-mean-square radius rrms with a reference length R. For nuclei with short-range interac-
tions the range of the potential or almost equivalently the size of the core is used [9]. For a
spatially extended nuclear state (compared to core or potential size) most of the wave func-
tion has tunneled into the classically forbidden region and we have earlier suggested [1] to use
this for a quantitative assessment of halos, namely that one should have a large (e.g., > 0.5)
probability of being in this region or alternatively r2

rms > 2R2.
The reference length scale is then naturally identified with the outer classical turning point.

For nuclear systems the size of the core-density distribution could be used as well. However,
this distinction is decisive when generalizing to other systems with longer-ranged interactions.
We shall maintain the outer classical turning point of the potential as the reference length,
since we want to focus on similarities of the structure of the halo wave functions. Furthermore,
using the size of the core-density distribution instead would immediately classify all atoms as
multi-body halos, since the electron wave functions are all outside the nuclear core density.
This choice implies that our reference length scale in general depends on the shape of the
potential and on the exact binding energy. Halos are by this definition bound states where
quantum tunneling enters as the determining factor in the structure, simply because the
probability of being outside the outer classical turning point must be large.

Two-body scaling plots. – For a two-body system the pure s-wave Yukawa wave function
corresponding to a zero-range potential gives 〈r2〉 = h̄2/(4µB), where r is the relative coordi-
nate, µ is the reduced mass and B the binding energy. Choosing the scaling radius R as the
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Fig. 1 – Scaling plot for two-body halos. The ratio of halo and core-potential square radii is plotted vs.
the scaled separation energy. The dashed line corresponds to a pure s-wave Yukawa wave function.
The solid lines are results for square-well potentials, the thin horizontal lines indicate where 50% of
the wave function is outside the potential. The dash-dotted line are results for a r−2-potential. Filled
symbols are derived from experimental data, the squares and triangles come from simple [13,14] and
more evolved [15] analyses of relativistic collisions. Open symbols are from theoretical calculations
[6, 16,17] and are plotted at the calculated binding energy.

A. S. Jensen et al., Rev. Mod. Phys. 76, 215–261 (2004)

⇒ halos only for low orbital angular momentum (s and p)

⇒ generally not along the drip-line in heavier systems

⇒ halos limited to lighter masses ?
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⇒ halos only for low orbital angular momentum (s and p)

⇒ generally not along the drip-line in heavier systems

⇒ halos limited to lighter masses ?

potential mechanisms for low l at heavier A:
- shell evolution
- deformation & halos
- halo formation adds extra stability ?

halos more common than expected?}
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plus the square of the Yukawa function for the two-valence
neutrons.

The square of the Yukawa function is known to be a
good approximation to the shape of a single-particle den-
sity at the outer region of a core with centrifugal barriers.
The assumed density is expressed as

!pðrÞ ¼ HO; !nðrÞ ¼
!
HO ðr $ rcÞ
!0 expð%"rÞ=r2 ðr > rcÞ;

(1)

where rc is the critical radius at which the HO function
crosses with the square of the Yukawa function and " is the
asymptotic slope of the tail, " ¼ 2

ffiffiffiffiffiffiffiffiffiffi
2#$

p
=@, where #

denotes the reduced mass of a single neutron and 20C.
We fixed $ to be S2n=2 ¼ 210 keV, or Sn ¼ 750 keV
[7]. The width parameter (aHO) of the core, chosen to be
2.22 fm so as to reproduce the present %R data of 20Cþ p,
is common to both protons and neutrons. The rc value was
used as a parameter. The resultant ~rm value with $ ¼ S2n=2
was 5:4' 0:9 fm for rc ¼ 5:39 fm and that with $ ¼ Sn
was 5:0' 0:8 fm for rc ¼ 3:90 fm, respectively, so as to
reproduce the present %R data of 22Cþ p. It should be
noted that both results overlap within their error bars. The
result is displayed in Fig. 2. It can be seen that the ~rm of 22C
does not follow the systematic behavior of radii in carbon
isotopes with N $ 14, suggesting a neutron halo.

We may not exclude the possibility that the large %R and
the radius of 5.4 fm are due to a deformation effect.
According to the ‘‘pairing-plus-quadrupole’’ model [25],
where the nuclear shapes are parameterized as rotational
ellipsoids with the deformation limited to the quadrupole

contribution, the spherical part of the nuclear radius (~rsph:m )

is increased by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 5

4&'
2
2Þ

q
. If the moderate

deformation of '2 (%0:258 predicted by the deformed
Skyrme Hartree-Fock model [26] is used, the increase is
only 1.3%. Hence it seems that the large radius is probably
not due to a deformation effect.
We then studied whether the configuration of two-

valence neutrons is ð0d5=2Þ2J¼0 or ð1s1=2Þ2J¼0, i.e.,
’ðr1; r2Þ ¼ ½(jðr1Þ(jðr2Þ*J¼0, where j ¼ 0d5=2 or 1s1=2.
We calculated %R with the FB approach under the finite-
range treatment as a function of the s-wave spectroscopic
factor f (the relative ratio of the wave function of
ð0d5=2Þ2J¼0 or ð1s1=2Þ2J¼0) in the following expression:

’ðr1; r2Þ ¼ f
ffiffiffi
f

p
½(1s1=2ðr1Þ(1s1=2ðr2Þ*J¼0

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1% f

p
½(0d5=2ðr1Þ(0d5=2ðr2Þ*J¼0g: (2)

In the analysis, each wave function (0d5=2ðrÞ and (1s1=2ðrÞ
was obtained by solving the Schrödinger equation in a
Woods-Saxon potential for a given value of S2n=2, with a
diffuseness parameter of 0.6 fm and a radius parameter of
1:2A1=3 fm. As for the core of 20C, we took the HO density
distribution with aHO ¼ 2:22 fm for both protons and
neutrons.
In Fig. 3, %R for f ¼ 1:0 and that for f ¼ 0:0 are

plotted, for two different values of S2n. It can be seen
from the figure that the discrepancy between the measured
%R and calculated %R for f ¼ 0:0 is much larger than that
for f ¼ 1:0 with S2n ¼ 420 keV (dashed lines). It de-
creases if we take S2n ¼ 10 keV instead (solid lines).
The pure 1s1=2 wave function (f ¼ 1:0) with S2n ¼
10 keV reproduced the measured %R for 22C within the
error bar of the experimental value. This indicates that two-
valence neutrons in 22C preferentially occupy the 1s1=2
orbital. The s-wave dominance is consistent with a theo-
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FIG. 2. The ~rm as a function of the neutron number of C
isotopes. The filled square and circles show the present result
and those determined at GSI [14], respectively, while open
symbols are the result of the calculation [22]. The lines connect
the open circles. The inset shows !pðrÞ (solid line) and !nðrÞ
(dotted line) of 22C for the determined parameter. See text.
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FIG. 3 (color). The %R for f ¼ 1:0 (red triangles) and that for
f ¼ 0:0 (blue triangles), with S2n ¼ 420 keV (open symbols)
and S2n ¼ 10 keV (closed symbols), respectively. The lines are
to guide the eye. The experimental data (solid circles) as a
function of the mass number of C isotopes are also plotted.
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The secondary beams bombarded a 204 mg=cm2 thick
liquid hydrogen cell, a part of the ‘‘cryogenic proton and
alpha target system’’ (CRYPTA) [13], located at F3. The
entrance and exit windows were 11 mg=cm2 thick havar
foils with a diameter of 40 mm. The proton target provides
a larger reaction rate of!7:0% for the same energy loss of
the 22C beam in both target materials than the!2:5% of the
carbon often used in our previous experiments [9,14]. The
uniformity in the thickness of this target over the whole
area was maintained at better than 2% during the measure-
ment by controlling the temperature (15:9" 0:2 K) [15] of
the system. The energies of 19C, 20C and 22C at the mid-
point of the reaction target were 40, 40, and
41 MeV=nucleon, respectively. The beam position at the
reaction target was measured by parallel-plate avalanche
counters (PPACs).

The noninteracting C nuclei in the target were trans-
ported by a superconducting triplet quadrupole (STQ)
magnet [16] to the final focal plane (F4) of the RIPS,
located 5 m downstream of the reaction target. We used
an experimental setup (‘‘the TOF mass analyzer for RI
beam experiments’’ -TOMBEE) similar to that described
in Refs. [17,18]. Particles were tracked by PPACs and
identified using a large area Si-NaI telescope (two layers
of circular Si detector with size of 123 mm!# 320 "m,
and NaI of 500!# 6 cm) thus providing a measurement of
interaction cross sections (#I) by the transmission method.
The nuclear charge (Z) and mass (A) resolutions in FWHM
were found to be $Z=Z! 4:0%, 1.3% and $A=A! 0:6%,
2.2% in front of and behind the reaction target, respec-
tively. These resolutions were sufficient to unambiguously

identify the Z and A for each beam particle as shown in
Fig. 1.
The #I was obtained by the equation #I ¼ ð&1=NtÞ#

lnð%=%0Þ, where % is the ratio of the number of noninter-
acting nuclei to that of incident nuclei for a target-in
measurement and %0 is the same ratio for an empty-target
measurement. The number of target nuclei per unit area is
denoted as Nt. The values of %0 were greater than 0.95 and
those of % were 0.80–0.89. The deviation of %0 from unity
was mainly due to nuclear interactions in the detectors. The
momentum and angular emittance guaranteed full trans-
mission in the STQ section for noninteracting C particles.
This was studied using the simulation code MOCADI [19],
which took into account the effect of fragmentations and
small-angle deflections due to multiple-Coulomb scatter-
ing in the reaction target. In practice, it was achieved by
restricting the beam angle and position at the target (&,
! ( "30 mrad, r ( 17 mm) in an offline analysis by ray
tracing with the PPACs located at F3.
The error bars of #I for

19;20C are found to be compa-
rable to the inelastic scattering cross sections (#inel:) of
19;20Cþ p reactions, reported in Refs. [20,21], where
'-ray spectroscopy experiments at around 40–50A MeV
were performed. We assumed 22C has no excited states,
and therefore we approximated #R * #I. The #R deter-
mined in this way are listed in Table I, together with
predictions of #R by a Glauber calculation [22], which is
an established scattering theory based on the eikonal and
the adiabatic approximations.
The Glauber calculation is based on the few-body (FB)

approach assuming a one-neutron halo structure for 19C
and the optical-limit (OL) approach for 20C. The experi-
mental values of #R for 19;20C are consistent with the
predictions as seen in Table I. We observed a large en-
hancement in #R for 22C compared to 19;20C, albeit with
rather large uncertainty (20%). This enhancement is not
reproduced by a calculation using the same FB approach
assuming a pure s-wave two-neutron halo structure [22].
This may be due to a smaller S2n than that assumed in the
calculation. The large #R suggests a neutron halo structure
in 22C.
The rms matter radius (~rm + hr2mi1=2) was extracted

using the Glauber model. In the OL approach with the
finite-range treatment that we adopted [23], the beam
energy (E) dependence of #R for the 12Cþ 12C system is
well described for E ¼ 30A–1000A MeV. To calculate #R

we assumed a density distribution ((ðrÞ) of 22C to be a
harmonic oscillator (HO) function [24] for the core (20C)

C22

(b) (c)

(a)
Q/AZ

A/Q

∆Z ~ 0.24 ∆A ~ 0.12

22C

3.43.2 3.6 3.8

3.63.43.23 3.8

4

4

3654

5

6

7

0

1

10

103103

1010

102102

11

Z 

FIG. 1 (color). (a) Two-dimensional plot of Z versus A=Q in
front of the reaction target. (b) Z projection of Fig. 1(a). The
solid line indicates a Gaussian fit to the Z ¼ 6 peak, yielding a
$Z ¼ 0:24 in FWHM. (c) A=Q-projection spectrum for the Z ¼
6 particles. The solid line indicates a Gaussian fit to the 22C peak,
yielding a $A ¼ 0:12 in FWHM.

TABLE I. Reaction cross sections (#R) in millibarns.

A #R #calc:
R [22]

19 754(22) 758
20 791(34) 761
22 1338(274) ,957
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plus the square of the Yukawa function for the two-valence
neutrons.

The square of the Yukawa function is known to be a
good approximation to the shape of a single-particle den-
sity at the outer region of a core with centrifugal barriers.
The assumed density is expressed as

!pðrÞ ¼ HO; !nðrÞ ¼
!
HO ðr $ rcÞ
!0 expð%"rÞ=r2 ðr > rcÞ;

(1)

where rc is the critical radius at which the HO function
crosses with the square of the Yukawa function and " is the
asymptotic slope of the tail, " ¼ 2

ffiffiffiffiffiffiffiffiffiffi
2#$

p
=@, where #

denotes the reduced mass of a single neutron and 20C.
We fixed $ to be S2n=2 ¼ 210 keV, or Sn ¼ 750 keV
[7]. The width parameter (aHO) of the core, chosen to be
2.22 fm so as to reproduce the present %R data of 20Cþ p,
is common to both protons and neutrons. The rc value was
used as a parameter. The resultant ~rm value with $ ¼ S2n=2
was 5:4' 0:9 fm for rc ¼ 5:39 fm and that with $ ¼ Sn
was 5:0' 0:8 fm for rc ¼ 3:90 fm, respectively, so as to
reproduce the present %R data of 22Cþ p. It should be
noted that both results overlap within their error bars. The
result is displayed in Fig. 2. It can be seen that the ~rm of 22C
does not follow the systematic behavior of radii in carbon
isotopes with N $ 14, suggesting a neutron halo.

We may not exclude the possibility that the large %R and
the radius of 5.4 fm are due to a deformation effect.
According to the ‘‘pairing-plus-quadrupole’’ model [25],
where the nuclear shapes are parameterized as rotational
ellipsoids with the deformation limited to the quadrupole

contribution, the spherical part of the nuclear radius (~rsph:m )

is increased by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 5

4&'
2
2Þ

q
. If the moderate

deformation of '2 (%0:258 predicted by the deformed
Skyrme Hartree-Fock model [26] is used, the increase is
only 1.3%. Hence it seems that the large radius is probably
not due to a deformation effect.
We then studied whether the configuration of two-

valence neutrons is ð0d5=2Þ2J¼0 or ð1s1=2Þ2J¼0, i.e.,
’ðr1; r2Þ ¼ ½(jðr1Þ(jðr2Þ*J¼0, where j ¼ 0d5=2 or 1s1=2.
We calculated %R with the FB approach under the finite-
range treatment as a function of the s-wave spectroscopic
factor f (the relative ratio of the wave function of
ð0d5=2Þ2J¼0 or ð1s1=2Þ2J¼0) in the following expression:

’ðr1; r2Þ ¼ f
ffiffiffi
f

p
½(1s1=2ðr1Þ(1s1=2ðr2Þ*J¼0

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1% f

p
½(0d5=2ðr1Þ(0d5=2ðr2Þ*J¼0g: (2)

In the analysis, each wave function (0d5=2ðrÞ and (1s1=2ðrÞ
was obtained by solving the Schrödinger equation in a
Woods-Saxon potential for a given value of S2n=2, with a
diffuseness parameter of 0.6 fm and a radius parameter of
1:2A1=3 fm. As for the core of 20C, we took the HO density
distribution with aHO ¼ 2:22 fm for both protons and
neutrons.
In Fig. 3, %R for f ¼ 1:0 and that for f ¼ 0:0 are

plotted, for two different values of S2n. It can be seen
from the figure that the discrepancy between the measured
%R and calculated %R for f ¼ 0:0 is much larger than that
for f ¼ 1:0 with S2n ¼ 420 keV (dashed lines). It de-
creases if we take S2n ¼ 10 keV instead (solid lines).
The pure 1s1=2 wave function (f ¼ 1:0) with S2n ¼
10 keV reproduced the measured %R for 22C within the
error bar of the experimental value. This indicates that two-
valence neutrons in 22C preferentially occupy the 1s1=2
orbital. The s-wave dominance is consistent with a theo-
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FIG. 2. The ~rm as a function of the neutron number of C
isotopes. The filled square and circles show the present result
and those determined at GSI [14], respectively, while open
symbols are the result of the calculation [22]. The lines connect
the open circles. The inset shows !pðrÞ (solid line) and !nðrÞ
(dotted line) of 22C for the determined parameter. See text.
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FIG. 3 (color). The %R for f ¼ 1:0 (red triangles) and that for
f ¼ 0:0 (blue triangles), with S2n ¼ 420 keV (open symbols)
and S2n ¼ 10 keV (closed symbols), respectively. The lines are
to guide the eye. The experimental data (solid circles) as a
function of the mass number of C isotopes are also plotted.
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ported by a superconducting triplet quadrupole (STQ)
magnet [16] to the final focal plane (F4) of the RIPS,
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an experimental setup (‘‘the TOF mass analyzer for RI
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identified using a large area Si-NaI telescope (two layers
of circular Si detector with size of 123 mm!# 320 "m,
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interaction cross sections (#I) by the transmission method.
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2.2% in front of and behind the reaction target, respec-
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identify the Z and A for each beam particle as shown in
Fig. 1.
The #I was obtained by the equation #I ¼ ð&1=NtÞ#

lnð%=%0Þ, where % is the ratio of the number of noninter-
acting nuclei to that of incident nuclei for a target-in
measurement and %0 is the same ratio for an empty-target
measurement. The number of target nuclei per unit area is
denoted as Nt. The values of %0 were greater than 0.95 and
those of % were 0.80–0.89. The deviation of %0 from unity
was mainly due to nuclear interactions in the detectors. The
momentum and angular emittance guaranteed full trans-
mission in the STQ section for noninteracting C particles.
This was studied using the simulation code MOCADI [19],
which took into account the effect of fragmentations and
small-angle deflections due to multiple-Coulomb scatter-
ing in the reaction target. In practice, it was achieved by
restricting the beam angle and position at the target (&,
! ( "30 mrad, r ( 17 mm) in an offline analysis by ray
tracing with the PPACs located at F3.
The error bars of #I for

19;20C are found to be compa-
rable to the inelastic scattering cross sections (#inel:) of
19;20Cþ p reactions, reported in Refs. [20,21], where
'-ray spectroscopy experiments at around 40–50A MeV
were performed. We assumed 22C has no excited states,
and therefore we approximated #R * #I. The #R deter-
mined in this way are listed in Table I, together with
predictions of #R by a Glauber calculation [22], which is
an established scattering theory based on the eikonal and
the adiabatic approximations.
The Glauber calculation is based on the few-body (FB)

approach assuming a one-neutron halo structure for 19C
and the optical-limit (OL) approach for 20C. The experi-
mental values of #R for 19;20C are consistent with the
predictions as seen in Table I. We observed a large en-
hancement in #R for 22C compared to 19;20C, albeit with
rather large uncertainty (20%). This enhancement is not
reproduced by a calculation using the same FB approach
assuming a pure s-wave two-neutron halo structure [22].
This may be due to a smaller S2n than that assumed in the
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in 22C.
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using the Glauber model. In the OL approach with the
finite-range treatment that we adopted [23], the beam
energy (E) dependence of #R for the 12Cþ 12C system is
well described for E ¼ 30A–1000A MeV. To calculate #R

we assumed a density distribution ((ðrÞ) of 22C to be a
harmonic oscillator (HO) function [24] for the core (20C)
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FIG. 1 (color). (a) Two-dimensional plot of Z versus A=Q in
front of the reaction target. (b) Z projection of Fig. 1(a). The
solid line indicates a Gaussian fit to the Z ¼ 6 peak, yielding a
$Z ¼ 0:24 in FWHM. (c) A=Q-projection spectrum for the Z ¼
6 particles. The solid line indicates a Gaussian fit to the 22C peak,
yielding a $A ¼ 0:12 in FWHM.

TABLE I. Reaction cross sections (#R) in millibarns.

A #R #calc:
R [22]

19 754(22) 758
20 791(34) 761
22 1338(274) ,957
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TABLE IV. The reaction cross
sections of 22C incident on a pro-
ton target at 40A MeV for different
two-neutron separation energies,
S2n. The rm value denotes the rms
matter radius.

S2n (MeV) rm (fm) σR (mb)

0.489 3.6 957
0.361 3.7 969
0.232 3.8 985
0.122 4.1 1005

This includes a A1/3 correction in addition to the simple
geometrical A2/3 term. In Ref. [25], Carlson used Rp instead
of C0 here. He fitted the reaction cross sections of stable nuclei
incident on a proton target in the energy range from 40 MeV
to 560 MeV.

In Fig. 4, we compare our numerical results (open circles)
listed in Table III with the fit using Eq. (11) (solid lines) at 40,
100, and 550 MeV. The values of C0 and r0 extracted from
the fit are given in Table V. These values that we find are
different from those obtained by Carlson, which are given in
the parentheses in the table.

The parameter C0 implies the strength of A1/3 correction to
A2/3-dependence of the reaction cross sections. The values in
Table V decrease with the energy, which is consistent with the
geometrical picture of the cross section at high energy, because
σR ∝ A2/3 for proton-nucleus reaction.

As one can see from Fig. 4, the curves with our parameters
nicely fit the numerical results for the stable isotopes as well
as the neutron-rich unstable isotopes. The estimation with
Carlson’s parameters underestimates our numerical results for
neutron-rich cases. This reflects an anomalous mass number
dependence of the size of such exotic nuclei. Even with the
new parametrization, the reaction cross section of 22C is even
larger than the fit, especially at 40 MeV. This would suggest an
extended surface structure of 22C. We believe that this simple
fitting formula will serve as a reference for discussions of the
total reaction cross sections.

TABLE V. The parameters of Eq. (11)
which give the lines plotted in Fig. 4.
The values in the parentheses are those of
Carlson [25].

E (MeV) C0 (fm) r0 (fm)

40 −3.83(1.00) 3.27(1.21)
80 −3.123 2.73

100 −2.95(−0.31) 2.58(1.37)
140 −2.68 2.38
200 −2.46 2.21
240 −2.36 2.14
300 −2.14 2.03
425 −1.62 1.85
550 −1.58(−0.30) 1.84(1.33)
800 −1.31 1.782
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FIG. 2. Comparison of the numerical results with the proton-
12C total reaction cross section data as a function of energy. The
experimental data are taken from Refs. [25,26].
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FIG. 3. (Color online) Reaction cross section for the carbon
isotopes at 40 MeV. The experimental data are taken from Ref. [25]:
The larger one is natural carbon at 42 MeV, and the smaller one
is 12C at 40 MeV. The energy is converted to the case of a proton
target. The preliminary data for 22C is about 1000 mb with a large
uncertainty [13].
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plus the square of the Yukawa function for the two-valence
neutrons.

The square of the Yukawa function is known to be a
good approximation to the shape of a single-particle den-
sity at the outer region of a core with centrifugal barriers.
The assumed density is expressed as

!pðrÞ ¼ HO; !nðrÞ ¼
!
HO ðr $ rcÞ
!0 expð%"rÞ=r2 ðr > rcÞ;

(1)

where rc is the critical radius at which the HO function
crosses with the square of the Yukawa function and " is the
asymptotic slope of the tail, " ¼ 2

ffiffiffiffiffiffiffiffiffiffi
2#$

p
=@, where #

denotes the reduced mass of a single neutron and 20C.
We fixed $ to be S2n=2 ¼ 210 keV, or Sn ¼ 750 keV
[7]. The width parameter (aHO) of the core, chosen to be
2.22 fm so as to reproduce the present %R data of 20Cþ p,
is common to both protons and neutrons. The rc value was
used as a parameter. The resultant ~rm value with $ ¼ S2n=2
was 5:4' 0:9 fm for rc ¼ 5:39 fm and that with $ ¼ Sn
was 5:0' 0:8 fm for rc ¼ 3:90 fm, respectively, so as to
reproduce the present %R data of 22Cþ p. It should be
noted that both results overlap within their error bars. The
result is displayed in Fig. 2. It can be seen that the ~rm of 22C
does not follow the systematic behavior of radii in carbon
isotopes with N $ 14, suggesting a neutron halo.

We may not exclude the possibility that the large %R and
the radius of 5.4 fm are due to a deformation effect.
According to the ‘‘pairing-plus-quadrupole’’ model [25],
where the nuclear shapes are parameterized as rotational
ellipsoids with the deformation limited to the quadrupole

contribution, the spherical part of the nuclear radius (~rsph:m )

is increased by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 5

4&'
2
2Þ

q
. If the moderate

deformation of '2 (%0:258 predicted by the deformed
Skyrme Hartree-Fock model [26] is used, the increase is
only 1.3%. Hence it seems that the large radius is probably
not due to a deformation effect.
We then studied whether the configuration of two-

valence neutrons is ð0d5=2Þ2J¼0 or ð1s1=2Þ2J¼0, i.e.,
’ðr1; r2Þ ¼ ½(jðr1Þ(jðr2Þ*J¼0, where j ¼ 0d5=2 or 1s1=2.
We calculated %R with the FB approach under the finite-
range treatment as a function of the s-wave spectroscopic
factor f (the relative ratio of the wave function of
ð0d5=2Þ2J¼0 or ð1s1=2Þ2J¼0) in the following expression:

’ðr1; r2Þ ¼ f
ffiffiffi
f

p
½(1s1=2ðr1Þ(1s1=2ðr2Þ*J¼0

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1% f

p
½(0d5=2ðr1Þ(0d5=2ðr2Þ*J¼0g: (2)

In the analysis, each wave function (0d5=2ðrÞ and (1s1=2ðrÞ
was obtained by solving the Schrödinger equation in a
Woods-Saxon potential for a given value of S2n=2, with a
diffuseness parameter of 0.6 fm and a radius parameter of
1:2A1=3 fm. As for the core of 20C, we took the HO density
distribution with aHO ¼ 2:22 fm for both protons and
neutrons.
In Fig. 3, %R for f ¼ 1:0 and that for f ¼ 0:0 are

plotted, for two different values of S2n. It can be seen
from the figure that the discrepancy between the measured
%R and calculated %R for f ¼ 0:0 is much larger than that
for f ¼ 1:0 with S2n ¼ 420 keV (dashed lines). It de-
creases if we take S2n ¼ 10 keV instead (solid lines).
The pure 1s1=2 wave function (f ¼ 1:0) with S2n ¼
10 keV reproduced the measured %R for 22C within the
error bar of the experimental value. This indicates that two-
valence neutrons in 22C preferentially occupy the 1s1=2
orbital. The s-wave dominance is consistent with a theo-
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FIG. 2. The ~rm as a function of the neutron number of C
isotopes. The filled square and circles show the present result
and those determined at GSI [14], respectively, while open
symbols are the result of the calculation [22]. The lines connect
the open circles. The inset shows !pðrÞ (solid line) and !nðrÞ
(dotted line) of 22C for the determined parameter. See text.
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FIG. 3 (color). The %R for f ¼ 1:0 (red triangles) and that for
f ¼ 0:0 (blue triangles), with S2n ¼ 420 keV (open symbols)
and S2n ¼ 10 keV (closed symbols), respectively. The lines are
to guide the eye. The experimental data (solid circles) as a
function of the mass number of C isotopes are also plotted.
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TABLE I. Theoretical shell-model single-
particle energies (in MeV) employed in present
work (see text for details).

nlj Single-particle energies

0d5/2 0.601
0d3/2 5.121
1s1/2 −0.793

is slightly underestimated. For the sake of completeness,
in Table II we also report the two-body matrix elements
of Veff .

TABLE II. Proton-proton, neutron-neutron, and proton-neutron
matrix elements (in MeV). They are antisymmetrized and normalized
by a factor 1/

√
(1 + δjajb

)(1 + δjcjd
).

nalaja nblbjb nclcjc nd ldjd J Tz TBME

0p1/2 0p1/2 0p1/2 0p1/2 0 1 −0.657
0d5/2 0d5/2 0d5/2 0d5/2 0 −1 −2.913
0d5/2 0d5/2 0d3/2 0d3/2 0 −1 −3.009
0d5/2 0d5/2 1s1/2 1s1/2 0 −1 −1.641
0d3/2 0d3/2 0d3/2 0d3/2 0 −1 −1.405
0d3/2 0d3/2 1s1/2 1s1/2 0 −1 −1.192
1s1/2 1s1/2 1s1/2 1s1/2 0 −1 −1.244
0d5/2 0d3/2 0d5/2 0d3/2 1 −1 −0.433
0d5/2 0d3/2 0d3/2 1s1/2 1 −1 −0.097
0d3/2 1s1/2 0d3/2 1s1/2 1 −1 0.178
0d5/2 0d5/2 0d5/2 0d5/2 2 −1 −1.102
0d5/2 0d5/2 0d5/2 0d3/2 2 −1 −0.073
0d5/2 0d5/2 0d5/2 1s1/2 2 −1 −0.990
0d5/2 0d5/2 0d3/2 0d3/2 2 −1 −0.804
0d5/2 0d5/2 0d3/2 1s1/2 2 −1 1.184
0d5/2 0d3/2 0d5/2 0d3/2 2 −1 −0.252
0d5/2 0d3/2 0d5/2 1s1/2 2 −1 −0.378
0d5/2 0d3/2 0d3/2 0d3/2 2 −1 −0.810
0d5/2 0d3/2 0d3/2 1s1/2 2 −1 0.893
0d5/2 1s1/2 0d5/2 1s1/2 2 −1 −1.317
0d5/2 1s1/2 0d3/2 0d3/2 2 −1 −0.847
0d5/2 1s1/2 0d3/2 1s1/2 2 −1 1.347
0d3/2 0d3/2 0d3/2 0d3/2 2 −1 0.121
0d3/2 0d3/2 0d3/2 1s1/2 2 −1 0.338
0d3/2 1s1/2 0d3/2 1s1/2 2 −1 −0.425
0d5/2 0d3/2 0d5/2 0d3/2 3 −1 0.594
0d5/2 0d3/2 0d5/2 1s1/2 3 −1 −0.099
0d5/2 1s1/2 0d5/2 1s1/2 3 −1 0.600
0d5/2 0d5/2 0d5/2 0d5/2 4 −1 −0.012
0d5/2 0d5/2 0d5/2 0d3/2 4 −1 −1.558
0d5/2 0d3/2 0d5/2 0d3/2 4 −1 −1.353
0p1/2 1s1/2 0p1/2 1s1/2 0 0 −1.752
0p1/2 0d3/2 0p1/2 0d3/2 1 0 −0.454
0p1/2 0d3/2 0p1/2 1s1/2 1 0 −0.024
0p1/2 1s1/2 0p1/2 1s1/2 1 0 −1.148
0p1/2 0d5/2 0p1/2 0d5/2 2 0 −2.358
0p1/2 0d5/2 0p1/2 0d3/2 2 0 −0.594
0p1/2 0d3/2 0p1/2 0d3/2 2 0 −1.560
0p1/2 0d5/2 0p1/2 0d5/2 3 0 −2.346

III. RESULTS AND COMPARISON WITH EXPERIMENT

We have performed calculations for carbon isotopes with
A ranging from 16 to 24, that is, for systems with valence
neutrons from Nval = 2 to 10. In Fig. 1 the calculated
ground-state energies of even-mass isotopes (continuous black
line) relative to 14C are compared with the experimental
ones (continuous red line) [14]. The experimental behavior
is well reproduced; in particular our results confirm that 22C
is the last bound isotope. Its calculated S2n is 601 keV to be
compared with the evaluation of 420 keV [14]. Moreover, our
calculations predict that 21C is unstable against one-neutron
decay, the theoretical Sn being −1.6 MeV. Therefore, our
results fit the picture of 22C as a Borromean nucleus.

From the inspection of Fig. 1, it can be seen that our calcu-
lations underestimate the experimental data. It is worth noting
that this discrepancy may be “healed” by downshifting the
single-particle spectrum so as to reproduce the experimental
ground-state energy of 15C relative to 14C. The results obtained
with this downshift (−427 keV) are represented in Fig. 1 by
the black dashed line.

In Fig. 2, we report the experimental and calculated low-
energy levels of the odd-mass nuclei 17C and 19C. It should
be pointed out that the experimental levels shown in Fig. 2
are the only observed bound states. We see that the theory
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FIG. 1. (Color online) Experimental [1,14] and calculated
ground-state energies for carbon isotopes from A = 16 to 24. N

is the number of neutrons. See text for details.
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TABLE I. Theoretical shell-model single-
particle energies (in MeV) employed in present
work (see text for details).

nlj Single-particle energies

0d5/2 0.601
0d3/2 5.121
1s1/2 −0.793

is slightly underestimated. For the sake of completeness,
in Table II we also report the two-body matrix elements
of Veff .

TABLE II. Proton-proton, neutron-neutron, and proton-neutron
matrix elements (in MeV). They are antisymmetrized and normalized
by a factor 1/

√
(1 + δjajb

)(1 + δjcjd
).

nalaja nblbjb nclcjc nd ldjd J Tz TBME

0p1/2 0p1/2 0p1/2 0p1/2 0 1 −0.657
0d5/2 0d5/2 0d5/2 0d5/2 0 −1 −2.913
0d5/2 0d5/2 0d3/2 0d3/2 0 −1 −3.009
0d5/2 0d5/2 1s1/2 1s1/2 0 −1 −1.641
0d3/2 0d3/2 0d3/2 0d3/2 0 −1 −1.405
0d3/2 0d3/2 1s1/2 1s1/2 0 −1 −1.192
1s1/2 1s1/2 1s1/2 1s1/2 0 −1 −1.244
0d5/2 0d3/2 0d5/2 0d3/2 1 −1 −0.433
0d5/2 0d3/2 0d3/2 1s1/2 1 −1 −0.097
0d3/2 1s1/2 0d3/2 1s1/2 1 −1 0.178
0d5/2 0d5/2 0d5/2 0d5/2 2 −1 −1.102
0d5/2 0d5/2 0d5/2 0d3/2 2 −1 −0.073
0d5/2 0d5/2 0d5/2 1s1/2 2 −1 −0.990
0d5/2 0d5/2 0d3/2 0d3/2 2 −1 −0.804
0d5/2 0d5/2 0d3/2 1s1/2 2 −1 1.184
0d5/2 0d3/2 0d5/2 0d3/2 2 −1 −0.252
0d5/2 0d3/2 0d5/2 1s1/2 2 −1 −0.378
0d5/2 0d3/2 0d3/2 0d3/2 2 −1 −0.810
0d5/2 0d3/2 0d3/2 1s1/2 2 −1 0.893
0d5/2 1s1/2 0d5/2 1s1/2 2 −1 −1.317
0d5/2 1s1/2 0d3/2 0d3/2 2 −1 −0.847
0d5/2 1s1/2 0d3/2 1s1/2 2 −1 1.347
0d3/2 0d3/2 0d3/2 0d3/2 2 −1 0.121
0d3/2 0d3/2 0d3/2 1s1/2 2 −1 0.338
0d3/2 1s1/2 0d3/2 1s1/2 2 −1 −0.425
0d5/2 0d3/2 0d5/2 0d3/2 3 −1 0.594
0d5/2 0d3/2 0d5/2 1s1/2 3 −1 −0.099
0d5/2 1s1/2 0d5/2 1s1/2 3 −1 0.600
0d5/2 0d5/2 0d5/2 0d5/2 4 −1 −0.012
0d5/2 0d5/2 0d5/2 0d3/2 4 −1 −1.558
0d5/2 0d3/2 0d5/2 0d3/2 4 −1 −1.353
0p1/2 1s1/2 0p1/2 1s1/2 0 0 −1.752
0p1/2 0d3/2 0p1/2 0d3/2 1 0 −0.454
0p1/2 0d3/2 0p1/2 1s1/2 1 0 −0.024
0p1/2 1s1/2 0p1/2 1s1/2 1 0 −1.148
0p1/2 0d5/2 0p1/2 0d5/2 2 0 −2.358
0p1/2 0d5/2 0p1/2 0d3/2 2 0 −0.594
0p1/2 0d3/2 0p1/2 0d3/2 2 0 −1.560
0p1/2 0d5/2 0p1/2 0d5/2 3 0 −2.346

III. RESULTS AND COMPARISON WITH EXPERIMENT

We have performed calculations for carbon isotopes with
A ranging from 16 to 24, that is, for systems with valence
neutrons from Nval = 2 to 10. In Fig. 1 the calculated
ground-state energies of even-mass isotopes (continuous black
line) relative to 14C are compared with the experimental
ones (continuous red line) [14]. The experimental behavior
is well reproduced; in particular our results confirm that 22C
is the last bound isotope. Its calculated S2n is 601 keV to be
compared with the evaluation of 420 keV [14]. Moreover, our
calculations predict that 21C is unstable against one-neutron
decay, the theoretical Sn being −1.6 MeV. Therefore, our
results fit the picture of 22C as a Borromean nucleus.

From the inspection of Fig. 1, it can be seen that our calcu-
lations underestimate the experimental data. It is worth noting
that this discrepancy may be “healed” by downshifting the
single-particle spectrum so as to reproduce the experimental
ground-state energy of 15C relative to 14C. The results obtained
with this downshift (−427 keV) are represented in Fig. 1 by
the black dashed line.

In Fig. 2, we report the experimental and calculated low-
energy levels of the odd-mass nuclei 17C and 19C. It should
be pointed out that the experimental levels shown in Fig. 2
are the only observed bound states. We see that the theory
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FIG. 1. (Color online) Experimental [1,14] and calculated
ground-state energies for carbon isotopes from A = 16 to 24. N

is the number of neutrons. See text for details.
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downshift of s.p.e. by 427 keV to
reproduce Δ(15C-14C)

AME’03 prediction

= S2n= 601 keV

= S2n

24C predicted to be unbound

⇒ shell model calculation favours larger S2n

(in contrast to reaction data)



Coulomb breakup of 31Ne (RIKEN)
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!ðE1Þ ¼
Z 1

Sn

16"3

9@c NE1ðExÞ
dBðE1Þ
dEx

dEx: (2)

Since NE1ðExÞ is an exponentially decreasing function of
Ex, !ðE1Þ becomes significant only when the E1 strength
is concentrated at low excitation energies as for a soft E1
excitation [19,23]. It should be noted that since 1n removal
channel is measured here, some yield may be lost to the 2n
or other channels lying above the 2n threshold (S2n ¼
Sn þ 3:4ð0:3Þ MeV [5]), a feature which enhances the
sensitivity to the low-lying E1 strength. Soft E1 excitations
are unique in that the BðE1Þ spectrum peaks just above
threshold and results in!%1nðE1Þ as large as 0.5–1 b, while
the contributions from other E1 excitations, such as the
giant dipole resonances (GDR), are negligible [19]. The
validity of this picture can be confirmed by using the
known E1 strength function of 19C [15] to compute the
inclusive cross section at the current incident energy. The
calculated value of!%1nðE1Þ ¼ 610ð70Þ mb is indeed con-
sistent with the present measurement of 690(70) mb.

We now address the single-particle structure of the
ground state of 31Ne. Figure 2 compares the experimentally
deduced !%1nðE1Þ with calculations for possible valence-
neutron configurations. Owing to the large uncertainty in
Sn [5], the cross sections are shown as a function of Sn.

The calculations have been made in the following man-
ner. The 31Neg:s: wave function with spin parity J" is
modeled as a linear combination of single-particle configu-
rations: 30Neð0þ1 Þ &#nlj,

30Neð2þ1 Þ &#n0l0j0 ; . . . , where
#nlj represents the valence neutron in the nlj orbital.
The first configuration describes a valence neutron coupled
to the ground state of the 30Ne core. The second describes

coupling to the first excited state of 30Ne (2þ1 , Ex ¼
0:801ð7Þ MeV) [10,11]). Given the large effective neutron
binding energies, higher-lying core states will not contrib-
ute significantly to !%1nðE1Þ. As such, we consider only
the 30Ne 0þ1 and 2þ1 states couple to a 2s1=2, 1d3=2, 1f7=2,
and 2p3=2 valence neutron. The single-particle wave func-
tions were derived for a Woods-Saxon potential with r0 ¼
1:24 fm, diffuseness a ¼ 0:62 fm and spin-orbit potential
VSO ¼ 7:0 MeV [24].
The E1 strength function is estimated based on the

Coulomb direct-breakup model of a coreþ 1n system
[14–16,25],

dBðE1Þ
dEx

/
X

ðlj;JcÞ
C2Slj;Jc

X

ðlfjfÞ
jhc lfjf jT̂ðE1Þj#nljij2; (3)

where C2Slj;Jc denotes the spectroscopic factor for
30NeðJ"c Þ &#nlj, and the E1 operator T̂ðE1Þ involves r,
the relative distance between the core and valence neutron.
The wave function c lfjf represents the neutron scattering

state in the exit channel. The core is considered to be a
spectator in the reaction. As the matrix element is related to
the Fourier transformation of r#ðrÞ, the BðE1Þ is enhanced
at low Ex for a halo system [14–16].
The cross section !%1nðE1Þ for each configuration is

then calculated by integrating Eq. (2) up to Ex ¼ Sn þ
3:4 MeVðS2nÞ, assuming that above this energy decay
occurs to a channel other than 1n emission. For C2S, we
use the maximum value of C2S ¼ 1 for a state coupled to
30Neð0þ1 Þ and C2S ¼ 2jþ 1 for a state coupled to
30Neð2þ1 Þ, which are the sum-rule limits [26]. For smaller
C2S, the cross section is reduced accordingly.
For the configurations involving 30Neð0þ1 Þ, the compari-

son in Fig. 2 shows that the data can not be reproduced by
the high-‘ configurations—30Neð0þ1 Þ&1d3=2 or

30Neð0þ1 Þ&
1f7=2. On the other hand, the configuration 30Neð0þ1 Þ &
2p3=2 (J" ¼ 3=2%) provides an excellent agreement with
the data for Sn ' 0:4 MeV. Note that the agreement is
good for any reasonable C2Sð<1Þ for lower values of Sn.
Similarly, the 30Neð0þ1 Þ & 2s1=2 configuration (J

" ¼ 1=2þ)
is also compatible with the data for Sn & 0:8 MeV.
In the case of configurations based on 30Neð2þ1 Þ, the

cross section will be reduced as the effective neutron
binding energy is increased by Ex of

30Neð2þ1 Þ, while the
higher limit employed for C2S will enhance it. As a result,
two configurations, 30Neð2þ1 Þ & 2s1=2 with J" ¼
ð3=2; 5=2Þþ and 30Neð2þ1 Þ & 2p3=2 with J" ¼ ð1=2%
7=2Þ% are compatible with the data. In short, the configu-
rations that can explain the observed !%1nðE1Þ are
30Neð0þ1 Þ & 2p3=2,

30Neð0þ1 Þ & 2s1=2,
30Neð2þ1 Þ & 2s1=2 or

Neð2þ1 Þ & 2p3=2. These are all low-‘ configurations with
weak binding and, as such, are consistent with the forma-
tion of a halo.
Significantly, the naive shell model configuration of

30Neð0þ1 Þ & 1f7=2 does not contribute to the structure of

FIG. 2 (color online). The Coulomb breakup cross section for
31Ne (!%1nðE1Þ ¼ 540ð70Þ mb, hatched area) is compared with
calculations for possible configurations of the valence neutron
for the sum-rule limits of C2S as a function of Sn. The solid
curves are for the negative parity states, 2p3=2 and 1f7=2 coupled
to 30Neð0þ1 Þ, while the dot-dashed curves are for the positive
parity states, 2s1=2 and 1d3=2. The blue lines labeled with an
asterisk are for the configurations coupled to 30Neð2þ1 Þ.
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and are sufficient to identify soft E1 excitations and hence
possible halos. Indeed, such measurements were employed
in some of the pioneering work on 11Li [19].

The experiment was performed at the RI-beam factory
(RIBF) operated by the RIKEN Nishina Center and the
Center for Nuclear Study, University of Tokyo. The 31Ne
secondary beam was produced via bombardment of a thick
Be target by a beam of 345 MeV=nucleon 48Ca ions with
an intensity of !60 particle nA. The fragments were
separated using the superconducting RI-beam separator
BigRIPS [20,21]. The 31Ne secondary beam was incident
on lead (3:37 g=cm2) and carbon targets (2:54 g=cm2) at
the entrance of the ZeroDegree Spectrometer (ZDS),
with an intensity of !5 particles=s. Background cor-
rections were obtained from a run without target. The
mean energy of 31Ne at the center of the target was
234ð230Þ MeV=nucleon for the Pb(C) target and the mo-
mentum spread of the 31Ne beam was !P=P ¼ %3%. The
beam particles were identified event-by-event by measur-
ing the energy loss (!E), magnetic rigidity (B!) and time-
of-flight (TOF) using the standard beamline detectors in
the second stage of BigRIPS [11,21]. The particle-
identification spectrum thus obtained is shown in Fig. 1
in terms of the atomic number (Z) and mass-to-charge ratio
(A=Z), and demonstrates the clear separation of 31Ne.

The 30Ne fragments were collected by tuning the rigidity
of the ZDS to center the momentum distribution. The
particle-identification spectrum of the fragments, shown
in the inset of Fig. 1, was derived from measurements of
the !E in an ionization chamber at the final image of the
ZDS, the TOF (target-final image) and the B! using a set of
PPACs at a dispersive focus of the ZDS. The inclusive one-
neutron removal cross sections ("&1n) were thus derived
from the number of 31Ne ions counted before the target and
the number of 30Ne fragments registered at the final image
of the ZDS. The transmission efficiency of 95% 3%
through the ZDS, estimated using a Monte Carlo simula-
tion and a calibration run using the secondary beam, was

incorporated in the extraction of "&1n. To obtain such a
high transmission, the 31Ne beam momentum acceptance
was restricted to !P=P ' 2% in the analysis.
Measurements of "&1n were also made for a 19C beam

on the Pb(C) target at a mean energy of
243ð238Þ MeV=nucleon. For the halo nucleus 19C, the
E1 strength function has already been established from
an exclusive breakup measurement [15]. As such, the cross
sections for 19C provide a reference for the inclusive
measurements.
The measured "&1n for

31Ne and 19C with the Pb and C
targets are listed in Table I. Most significantly, the ratios of
"&1nðPbÞ="&1nðCÞ for 31Ne and 19C are as high as 7–9,
much larger than the ratio estimated for nuclear breakup
only, which is about 1.7–2.6. This demonstrates that
"&1nðPbÞ is dominated by Coulomb breakup, as is typical
for a halo nucleus [14–19].
The Coulomb breakup component of the 1n removal

cross section on Pb, which is dominated by E1 excitations,
"&1nðE1Þ, was deduced by subtracting the nuclear compo-
nent estimated from "&1nðCÞ. To do this, it is assumed that
"&1nðCÞ arises entirely from the nuclear contribution, and
that the nuclear component for the Pb target scales with the
parameter ", as in,

"&1nðE1Þ ¼ "&1nðPbÞ & ""&1nðCÞ; (1)

where " was estimated to be !1:7–2:6. The lower limit is
from the ratio of targetþ projectile radii, as in Ref. [19],
while the upper bound is derived from the Serber model
[22]. The Coulomb breakup cross section was thus de-
duced to be "&1nðE1Þ ¼ 540% 70 mb for 31Ne, where
the uncertainty in " is incorporated in the error estimate.
Significantly, "&1nðE1Þ for 31Ne is nearly as high as that
for 19C (Table I).
The dominance of the Coulomb breakup for the reaction

on Pb and the deduced"&1nðE1Þ of some 0.5 b is indicative
of a soft E1 excitation, which is characteristic of 1n halo
structure. The relevance of the large inclusive Coulomb
breakup cross section to a soft E1 excitation can be under-
stood as follows. The total inclusive Coulomb breakup
cross section "ðE1Þ can be expressed in terms of the
integration over excitation energy Ex of the E1 strength
distribution (dBðE1Þ=dEx) folded with the E1 virtual pho-
ton number NE1ðExÞ [23]:

FIG. 1 (color online). Particle-identification spectrum for the
secondary beam provided by BigRIPS. Inset: Particle-
identification spectrum for neon isotopes in the ZDS, after
selecting 31Ne ions before the target.

TABLE I. Single-neutron removal cross sections ("&1n) for
31Ne and 19C on Pb and C targets at the incident energies shown.
The ratio of the measured cross sections and the deduced
Coulomb breakup cross sections are also listed.

Reaction #E=A (MeV) "&1n (mb) "&1nðPbÞ
"&1nðCÞ "&1nðE1Þ (mb)

31Neþ Pb 234 712(65) 9.0(1.1) 540(70)
31Neþ C 230 79(7)
19Cþ Pb 243 969(34) 7.4(4) 690(70)
19Cþ C 238 132(4)
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FIG. 5. (Color online) Nuclear contribution to the total reaction
cross section of 31Ne on a 208Pb target as a function of incident
energy. The dotted lines are the results obtained with the average
profile functions taken from Ref. [23]. See caption of Fig. 3 for r0

and a.

(dashed line) configurations is small though non-negligible.
As mentioned earlier, this difference comes mainly from the
valence-neutron contribution. The increase of σR from 30Ne
to 31Ne is even more striking for a 208Pb target. It is almost
10 times larger considering a 1p3/2 valence neutron than a
0f7/2 one. At 240 MeV/nucleon, the reaction cross section
increases from 4.36 b to 4.69 b in the former case while it goes
from 4.33 b to only 4.37 b in the latter.

Since the proton and neutron densities of the lead target are
different, we examine how much the cross sections depend on
the choice of the profile function "NN . Figure 5 compares two
sets of calculations, one which employs different interactions
between pp (or nn) and pn (full and dashed lines), and the
other which uses the averaged interaction taken from Ref. [23]
(dotted lines). As observed in Fig. 5, the choice of the averaged
interaction tends to slightly overestimate the cross sections
below 300 MeV/nucleon.

The enhanced cross section for the 1p3/2 orbit reflects the
spatial extension of the neutron orbit. If its Sn value is increased
to, say, 0.6 MeV as shown in Table II, σR(31Ne) gets smaller
compared to that with Sn = 0.33 MeV: At 240 MeV/nucleon,
it is reduced by 12 mb for carbon and by 65 mb for lead. These
cross sections are still significantly larger than those for the
0f7/2 neutron case.

B. One-neutron removal cross sections

As mentioned in Sec. II A, we evaluate the one-neutron
removal cross section σ−n for 31Ne on carbon and lead targets
using approximation (3). Figure 6 shows the results obtained
on a 12C target as a function of the 31Ne incident energy for
both 1p3/2 (full lines) and 0f7/2 (dashed lines) configurations.
To evaluate the sensitivity of these results to the potential set
used to generate the projectile densities, we have performed
the calculations with the different potentials given in Tables I
and II. Though the 1p3/2 or 0f7/2 orbits vary with the potential
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FIG. 6. (Color online) One-neutron removal cross section of
31Ne, approximated by σR(31Ne) − σR(30Ne), on a 12C target as a
function of incident energy: 1p3/2 (range between full lines) and
0f7/2 (range between dashed lines). The experimental point is from
Ref. [19].

set, they predict very similar σ−n values: In both cases these
values are contained between the pairs of lines shown in Fig. 6.
Hereafter we use the potential set with r0 = 1.25 fm and a =
0.75 fm for the 1p3/2 orbit, and the set with r0 = 1.25 fm and
a = 0.70 fm for the 0f7/2 orbit unless otherwise mentioned.

As discussed in the previous subsection, the interesting
result of this set of calculations is that σ−n is always much
larger for a 1p3/2 valence neutron than for a 0f7/2 one.
At 240 MeV/nucleon, close to the energy of the RIKEN
experiment [19], the former configuration leads to a cross
section of about 96 mb, whereas the latter gives only 26 mb.
This difference is basically due to the larger spatial extension
of the p orbit compared to that of the f orbit, which is due to
the change in the centrifugal barrier. The experimental cross
section amounts to 79(7) mb [19]. This value, being both
close to our 1p3/2 calculation and much higher than our 0f7/2
one, favors a ground-state wave function for 31Ne strongly
dominated by a configuration in which the valence neutron is
in the 1p3/2 orbital coupled to a 30Ne core in its 0+ ground
state. This comparison therefore suggests a 3/2− spin-parity
for the 31Ne ground state rather than the 7/2− deduced from
the naive shell model.

As shown in Fig. 6, the difference in the magnitude of σ−n

increases at lower incident energies. An experiment performed
at such an energy (e.g., a few tens of MeV/nucleon) would
improve the confidence in the identification of the 31Ne
configuration.

To evaluate σ−n for a 208Pb target we may no longer neglect
the Coulomb contribution to the one-neutron removal process.
Since the Coulomb interaction contributes mostly to the
elastic breakup, we add an estimate of the Coulomb-breakup
cross section to the reaction cross section computed within
the Glauber framework. To this end, we use the first-order
of the perturbation theory, considering only the dominant
dipole transition. In that approximation, the 1p3/2 neutron
is excited to continuum states with l = 0 or 2, whereas the

024606-7

30Ne(0+) ⊗ 1p3/2  ↔  30Ne(0+) ⊗ 0f7/2

σ-1n: 31Ne on 12C

W. Horiuchi et al., Phys. Rev. C 81, 024606 (2010)

 [mb] exp. th.: p3/2 th.: f7/2 Sn [keV]
σ-1n on 12C 79(7) 96 26
σ-1n on 208Pb 712(65) 1140 91 0.33

750 0.6
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(dashed line) configurations is small though non-negligible.
As mentioned earlier, this difference comes mainly from the
valence-neutron contribution. The increase of σR from 30Ne
to 31Ne is even more striking for a 208Pb target. It is almost
10 times larger considering a 1p3/2 valence neutron than a
0f7/2 one. At 240 MeV/nucleon, the reaction cross section
increases from 4.36 b to 4.69 b in the former case while it goes
from 4.33 b to only 4.37 b in the latter.

Since the proton and neutron densities of the lead target are
different, we examine how much the cross sections depend on
the choice of the profile function "NN . Figure 5 compares two
sets of calculations, one which employs different interactions
between pp (or nn) and pn (full and dashed lines), and the
other which uses the averaged interaction taken from Ref. [23]
(dotted lines). As observed in Fig. 5, the choice of the averaged
interaction tends to slightly overestimate the cross sections
below 300 MeV/nucleon.

The enhanced cross section for the 1p3/2 orbit reflects the
spatial extension of the neutron orbit. If its Sn value is increased
to, say, 0.6 MeV as shown in Table II, σR(31Ne) gets smaller
compared to that with Sn = 0.33 MeV: At 240 MeV/nucleon,
it is reduced by 12 mb for carbon and by 65 mb for lead. These
cross sections are still significantly larger than those for the
0f7/2 neutron case.

B. One-neutron removal cross sections

As mentioned in Sec. II A, we evaluate the one-neutron
removal cross section σ−n for 31Ne on carbon and lead targets
using approximation (3). Figure 6 shows the results obtained
on a 12C target as a function of the 31Ne incident energy for
both 1p3/2 (full lines) and 0f7/2 (dashed lines) configurations.
To evaluate the sensitivity of these results to the potential set
used to generate the projectile densities, we have performed
the calculations with the different potentials given in Tables I
and II. Though the 1p3/2 or 0f7/2 orbits vary with the potential
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31Ne, approximated by σR(31Ne) − σR(30Ne), on a 12C target as a
function of incident energy: 1p3/2 (range between full lines) and
0f7/2 (range between dashed lines). The experimental point is from
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set, they predict very similar σ−n values: In both cases these
values are contained between the pairs of lines shown in Fig. 6.
Hereafter we use the potential set with r0 = 1.25 fm and a =
0.75 fm for the 1p3/2 orbit, and the set with r0 = 1.25 fm and
a = 0.70 fm for the 0f7/2 orbit unless otherwise mentioned.

As discussed in the previous subsection, the interesting
result of this set of calculations is that σ−n is always much
larger for a 1p3/2 valence neutron than for a 0f7/2 one.
At 240 MeV/nucleon, close to the energy of the RIKEN
experiment [19], the former configuration leads to a cross
section of about 96 mb, whereas the latter gives only 26 mb.
This difference is basically due to the larger spatial extension
of the p orbit compared to that of the f orbit, which is due to
the change in the centrifugal barrier. The experimental cross
section amounts to 79(7) mb [19]. This value, being both
close to our 1p3/2 calculation and much higher than our 0f7/2
one, favors a ground-state wave function for 31Ne strongly
dominated by a configuration in which the valence neutron is
in the 1p3/2 orbital coupled to a 30Ne core in its 0+ ground
state. This comparison therefore suggests a 3/2− spin-parity
for the 31Ne ground state rather than the 7/2− deduced from
the naive shell model.

As shown in Fig. 6, the difference in the magnitude of σ−n

increases at lower incident energies. An experiment performed
at such an energy (e.g., a few tens of MeV/nucleon) would
improve the confidence in the identification of the 31Ne
configuration.

To evaluate σ−n for a 208Pb target we may no longer neglect
the Coulomb contribution to the one-neutron removal process.
Since the Coulomb interaction contributes mostly to the
elastic breakup, we add an estimate of the Coulomb-breakup
cross section to the reaction cross section computed within
the Glauber framework. To this end, we use the first-order
of the perturbation theory, considering only the dominant
dipole transition. In that approximation, the 1p3/2 neutron
is excited to continuum states with l = 0 or 2, whereas the

024606-7

30Ne(0+) ⊗ 1p3/2  ↔  30Ne(0+) ⊗ 0f7/2

σ-1n: 31Ne on 12C

W. Horiuchi et al., Phys. Rev. C 81, 024606 (2010)

 [mb] exp. th.: p3/2 th.: f7/2 Sn [keV]
σ-1n on 12C 79(7) 96 26
σ-1n on 208Pb 712(65) 1140 91 0.33

750 0.6

⇒ strong dependence on Sn

n removal cross section at ∼240A MeV:
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FIG. 2. Neutron one-particle levels in Woods-Saxon potentials as
a function of quadrupole deformation parameter β. The potential
depth is approximately adjusted so that the 21st neutron of the
prolately deformed nucleus 31Ne can be a halo neutron. The depth,
the diffuseness and the radius of the potential are −39 MeV, 0.67 fm,
and 3.946 fm (for A = 30), respectively. Positive-parity levels are
plotted by solid curves, while asymptotic quantum numbers [N nz "

#] are denoted for bound levels. See the text for details.

3/2], and 1/2+ for [200 1/2]. Among those four Nilsson
orbitals the [202 3/2] level is excluded as a candidate for the
configuration of the ground state of 31Ne, because the smallest
orbital-angular-momentum in the wave function of [202 3/2]
is $ = 2, which makes very little halo. Examining Fig. 2 we
may also note that the presence of 31Ne inside the neutron drip
line is possibly realized by the deformation which is created
by the Jahn-Teller effect due to the near degeneracy of 1f7/2,
2p3/2, and 2p1/2 shells in the continuum for spherical shape.

In Figs. 3(a) and 3(b) the probabilities of appreciable
components of the [330 1/2] and [321 3/2] levels calculated at
β = 0.3 and 0.5, respectively, are shown, while the channels
of p1/2 (only in [330 1/2]), p3/2, f5/2, f7/2, h9/2, and h11/2 are
included in the calculation. The radius of the Woods-Saxon
potential is fixed, while the depth is adjusted so as to obtain
respective Nilsson levels as eigenstates of the deformed
potential. As shown in Refs. [11,12], the p components in
#π = 1/2− and 3/2− Nilsson levels increase as the binding
energies approach zero, though the probabilities at zero
energies depend on Nilsson levels. This is in contrast to the fact
that the probability of the s component in #π = 1/2+ Nilsson
levels becomes always unity as the binding energy approaches
zero. For example, at ε# = −300 keV the probability of the
p3/2 component in the [330 1/2] level for β = 0.3 and the
[321 3/2] level for β = 0.5 is 0.5225 and 0.2534, respectively.
For reference, at ε# = −300 keV the probability of the s1/2
component in the [200 1/2] level for β = 0.5 is 0.67.

Now, for example, the shape of the radial wave function
of the p3/2 component of [330 1/2] at β = 0.3 is not the
same as that of the bound 2p3/2 level, even if both [330 1/2]
and 2p3/2 levels are calculatd at the same energy, because
the latter is an eigenstate of a given spherical potential while
the former is not. Moreover, two different spherical potentials
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FIG. 3. (a) Calculated probabilities of the major components of
the [330 1/2] level with β = 0.3 as a function of energy eigenvalue ε#.
(b) Calculated probabilities of the major components of the [321
3/2] level with β = 0.5 as a function of energy eigenvalue ε#. The
potential depth is adjusted to obtain respective ε# values as energy
eigenvalues of the deformed potential. The diffuseness and the radius
of the potential are 0.67 and 3.946 fm (for A = 30), respectively.

lead to different radial wave functions of s1/2 at a given
energy in the continuum. These differences may induce a
nonnegligible change in the resulting B(E1) values, even after
the normalization of the 2p3/2 wave function is adjusted to be
the same as the probability of the p3/2 component in [330 1/2].
In Fig. 4 we show the squared radial integral on the right-hand
side of Eq. (10) as a function of the continuum s1/2 energy
εc, which is calculated using the following two kinds of p3/2
bound-state wave functions: (i) the 2p3/2 wave function with
the energy eigenvalue −300 keV for a spherical potential and a
normalization of 0.5225; (ii) the p3/2 component of [330 1/2]
which has the energy of −300 keV in the deformed potential
with β = 0.3. The difference between the two radial wave
functions, 2p3/2 in (i) and p3/2 in (ii), disappears quickly
outside the nuclear radius. The appreciable difference in
dB(E1)/dE values of the two cases appears only for small
εc values, and the integration of the two curves over εc up till
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orbitals the [202 3/2] level is excluded as a candidate for the
configuration of the ground state of 31Ne, because the smallest
orbital-angular-momentum in the wave function of [202 3/2]
is $ = 2, which makes very little halo. Examining Fig. 2 we
may also note that the presence of 31Ne inside the neutron drip
line is possibly realized by the deformation which is created
by the Jahn-Teller effect due to the near degeneracy of 1f7/2,
2p3/2, and 2p1/2 shells in the continuum for spherical shape.

In Figs. 3(a) and 3(b) the probabilities of appreciable
components of the [330 1/2] and [321 3/2] levels calculated at
β = 0.3 and 0.5, respectively, are shown, while the channels
of p1/2 (only in [330 1/2]), p3/2, f5/2, f7/2, h9/2, and h11/2 are
included in the calculation. The radius of the Woods-Saxon
potential is fixed, while the depth is adjusted so as to obtain
respective Nilsson levels as eigenstates of the deformed
potential. As shown in Refs. [11,12], the p components in
#π = 1/2− and 3/2− Nilsson levels increase as the binding
energies approach zero, though the probabilities at zero
energies depend on Nilsson levels. This is in contrast to the fact
that the probability of the s component in #π = 1/2+ Nilsson
levels becomes always unity as the binding energy approaches
zero. For example, at ε# = −300 keV the probability of the
p3/2 component in the [330 1/2] level for β = 0.3 and the
[321 3/2] level for β = 0.5 is 0.5225 and 0.2534, respectively.
For reference, at ε# = −300 keV the probability of the s1/2
component in the [200 1/2] level for β = 0.5 is 0.67.

Now, for example, the shape of the radial wave function
of the p3/2 component of [330 1/2] at β = 0.3 is not the
same as that of the bound 2p3/2 level, even if both [330 1/2]
and 2p3/2 levels are calculatd at the same energy, because
the latter is an eigenstate of a given spherical potential while
the former is not. Moreover, two different spherical potentials
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FIG. 3. (a) Calculated probabilities of the major components of
the [330 1/2] level with β = 0.3 as a function of energy eigenvalue ε#.
(b) Calculated probabilities of the major components of the [321
3/2] level with β = 0.5 as a function of energy eigenvalue ε#. The
potential depth is adjusted to obtain respective ε# values as energy
eigenvalues of the deformed potential. The diffuseness and the radius
of the potential are 0.67 and 3.946 fm (for A = 30), respectively.

lead to different radial wave functions of s1/2 at a given
energy in the continuum. These differences may induce a
nonnegligible change in the resulting B(E1) values, even after
the normalization of the 2p3/2 wave function is adjusted to be
the same as the probability of the p3/2 component in [330 1/2].
In Fig. 4 we show the squared radial integral on the right-hand
side of Eq. (10) as a function of the continuum s1/2 energy
εc, which is calculated using the following two kinds of p3/2
bound-state wave functions: (i) the 2p3/2 wave function with
the energy eigenvalue −300 keV for a spherical potential and a
normalization of 0.5225; (ii) the p3/2 component of [330 1/2]
which has the energy of −300 keV in the deformed potential
with β = 0.3. The difference between the two radial wave
functions, 2p3/2 in (i) and p3/2 in (ii), disappears quickly
outside the nuclear radius. The appreciable difference in
dB(E1)/dE values of the two cases appears only for small
εc values, and the integration of the two curves over εc up till

021304-3

•axially symmetric quad-deformed   
Wood-Saxon

•dominance of lowest l-component 
for low binding energy

•irrespective of size of deformation 
or kind of orbit

Conclusions for 31Ne:
• Sn>500 keV 

- the deformation large (β>0.6) 
- Iπ=1/2+ from the Nilson level [200 1/2]. 

•Sn<500 keV 
Iπ=3/2- and a p-wave neutron halo coming from either
- [330 1/2] for 200 keV < Sn <500 keV or
- [321 3/2] for 200 keV > Sn



TITAN

ISAC beam: A+
11

Sn = m(Z,N − 1) +mn −m(Z,N)

determination of separation energies via direct mass measurement
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is floated to high voltage. The ions are confined in the radial
direction by an electric quadrupolar rf field and axially by a
potential minimum formed by a dc gradient. Through collision
with a He buffer gas, the ions are cooled before they are
extracted in bunches from the RFQ. A pulsed drift tube brings
the ions to ground potential with a kinetic energy of 2 keV.
The cooled and bunched ions are transferred directly from
the RFQ to the measurement Penning trap. A homogeneous,
axial 3.7 T magnetic field and a harmonic potential from a
hyperbolic electrode structure establish the confinement in
the Penning trap, resulting in three ion eigenmotions [25–27].
The magnetron and reduced cyclotron motions with respective
frequencies ν− and ν+ are in the radial direction and are
related to the cyclotron frequency νc = (1/2π )(q/m)B via
νc = ν+ + ν−. This equation only holds exactly for an ideal
trap. For a real Penning trap, frequency shifts are induced by
the misalignment of the magnetic field with the trap axis and
by harmonic distortions of the electric field [28,29]. These
frequency shifts have been studied for TITAN’s measurement
Penning trap [30] and are well below the precision of the
present measurement. Through the application of an electric
quadrupolar rf field at the frequency νrf the radial eigenmotions
can be coupled [27]. By applying νrf = νc at a constant product
of amplitude Arf and excitation time Trf of the rf, an initial
magnetron motion can be fully converted into a reduced
cyclotron motion and vice versa. According to ν+ " ν−, this
results in a significant change in an ion’s kinetic energy. In
the time-of-flight resonance detection technique [27,31], ions
initially on magnetron motion trajectories are excited by such
an rf field. Changes in the kinetic energy are observed by
a reduction of the time of flight (TOF) to a microchannel
plate (MCP) detector after the ions are ejected from the
trap. For each ion bunch, a fixed νrf is applied. By scanning
through νrf a resonance with a minimum in TOF at νrf = νc is
obtained. At TITAN the initial magnetron motion is induced
using a Lorentz-steerer [32], which allows fast and precise
ion preparation during the injection of the ion bunch into
the trap. Measurements were taken with excitation times of
Trf = 18 and 48 ms, corresponding to respective ion extraction
rates from the RFQ of 50 and 20 Hz. An example for
a resonance with Trf = 48 ms is shown in Fig. 1 and the
data are fit to the theoretical line shape [27]. To determine
the magnetic field in the trap, reference frequency scans were
performed with 12C before and after each 12Be measurement.
In all cases, the excitation time for 12C was identical to the
one for the interjacent 12Be measurement. The separation in
time between the 12C and 12Be measurements was kept below
one hour to minimize the effect of nonlinear changes in the
magnetic field between the two reference measurements. The
cyclotron frequency of 12C at the time of the 12Be measurement
was linearly interpolated from the preceding and following 12C
measurement. The frequency ratio R = νc(12Be+)/νc(12C+)
was calculated for each measurement set. A summary of these
can be found in Table I.

Various systematic effects at TITAN have recently been
studied with 6Li [30]. We are confident in extending the
corrections to the present mass range, especially since the
effects were shown to be almost two orders of magnitude below
the precision of this measurement. Particularly, because the
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FIG. 1. (Color online) 12Be+ resonance with excitation time of
Trf = 48 ms with a fit of the theoretical line shape (solid line).

reference ion and ion of interest share the same mass number,
effects of an improper electric field compensation, alignment
between magnetic and trap axes, or harmonic distortions of the
electrode structure effectively vanish. To minimize ion-ion or
ion-residual gas interactions, which could shift the observed
frequency, the number of ions in the trap at one time was kept
low: For 12C we detected on average less than 1.5 ions per ion
bunch and in the case of 12Be, the number of ions delivered
to TITAN was as low as 30–300 ions/s. The analysis was
performed once by taking all detected ions into account and a
second time by allowing events with only one registered ion per
bunch. A difference of 78 ppb in R between the two analysis
approaches was observed, corresponding to almost half of the
statistical uncertainty. This appears to be too large, given that
for 12Be the two data sets are highly correlated because of
the relatively rare scenario of detecting two ions during the
same ion bunch. To investigate a potential systematic effect,
we employed an ion-count-class analysis [33] of the reference
measurements as well as of an additional set of 10 12C
runs, which were taken half-way through the experiment.
The extracted shift is in comfortable agreement with zero,
but we cannot exclude a shift of the cyclotron frequency
of 19 ppb for 12C. For 12Be, the low number of counts
does not allow us to perform an ion-count-class analysis.
However, because of the laser ionization, we can safely assume

TABLE I. Mean cyclotron frequency ratio R between 12Be and
12C for Trf = 18 and 48 ms with statistical uncertainties. For the total
R the systematic uncertainties from potential shifts in νc(12C+) and
νc(12Be+) are also displayed.

Trf (ms) R = νc(12Be+)/νc(12C+) Number of Number
measurements of ions

18 0.997 761 43(27) 8 2580
48 0.997 761 37(23) 3 453

Total 0.997 761 39(17){2}{8} 3033

024314-2

T1/2 = 24 ms
~30-300 ions/s

12Be

12C
S. Ettenauer et al., PRC 81, 024314 (2010)

m.e.=25 078.0(2.1) keV

short half-lives:
3.4(8) ms for 31Ne and 6.1(1.4) ms for 22C
•11Li: 8.8 ms

•Trf ≈ 2.9⋅ T1/2 ⇒ Trf = 10 ms 

low yields:

M. Smith et al., PRL 101, 202501 (2008)

propose: mass measurement of 20,22C and 31,30Ne (30Ne part of S1240) with δm/m ≈ 5⋅10-7

request: 3 shifts + 1 shift setup for each case (12 shifts total)

             requires beam development (UO or UC for Ne, UO for C) ⇒ stage 1



Summary

• halo nuclei

– ideal testing grounds for nuclear structure models 

– limited to lighter masses? 

– mechanism for halos in heavier systems?

• recent reaction measurements

– 22C in transmission experiment

– 31N in Coulomb breakup

• in both cases: knowledge on S2n limited

⇒ interpretation of data ambiguous

⇒ uncertainty in reaction models

• for 22C: mass also benchmark for shell-model calculation

• TITAN:

– fastest Penning trap spectrometer: T1/2<10 ms possible

– measurements with low yields feasible

– propose mass measurement of 20,22C and 31,30Ne to extract S2n and Sn

– request 12 shifts / stage 1 13

evidence for halo structures in heavier systems}
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  for TITAN: < 5 ppb possible
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where θ is a misalignment angle of the trap geometrical axis
with respect to the magnetic field axis and ε is the harmonic
distortion factor. For the 6Li vs. 7Li measurement, #A/Acal. =
1/7, ν− = 6101.73(13) Hz, ν+,cal. = 8096378.00(13) Hz. The
misalignment angle θ was minimized by aligning the Penning
trap support structure with the magnetic field using an electron
beam and by having tight machining tolerance for the trap
electrodes leading to θmax = 2.1 × 10−3. The TITAN Penning
trap was also designed to minimize the size of the harmonic dis-
tortion parameter. Patch oxidation of the trap electrode surfaces
would cause undesired stray electric fields. It was prevented
by gold-plating the electrodes. Quadrupole deformation of the
electrical potential in the x-y plane was minimized by applying
the RF on the correction guard electrode, which allows to
have the ring electrode unsliced. Due to the tight tolerances
of the sapphire spheres on which the trap electrodes sits on,
the contribution from the misalignment of the ring electrode
with respect to the principal axis passing through the end
cap hole was minimal. The largest contribution to ε came
from the machining tolerance of δ = 0.01 mm on the ring
electrode. Using the ring electrode radius at the center of the
trap r0 = 15 mm, one gets

εmax = 1 −
(

r0 − δ

r0 + δ

)2

= 2.7 × 10−3. (12)

As ε and θ were not measured experimentally, to be conser-
vative, we chose ε ! 0.005 and θ ! 0.004, which is twice the
estimates made from the machining drawings. The maximal
value for (#R/R)mis. is obtained when ε = 0 and θ = 0.004
and is equal to 4.2 ppb. This upper limit is taken as the error
resulted from misalignment and harmonic distortion.

IV. FINAL 6Li MASS DETERMINATION

The 6Li mass determination was carried out by measuring
the frequency ratio of singly charged 6Li and 7Li ions using
the TITAN Penning trap.

Taking all the different sources of error summarized in
Table II into account and adding their errors in quadrature,
the final frequency ratio is Rfinal = 0.857 332 053 6(37).
Using Eq. (2), the 7Li mass m(7Li) = 7.016 003 425 6(45)
u and including the first electron ionization energy of
Li [39], the 6Li mass measured by TITAN is m(6Li) =
6.015 122 889(26) u with a corresponding mass excess of
ME(6Li) = 14 086.881(25) keV.

TABLE II. Error budget for the frequency ratio
measurement Rfinal which includes the different causes
of errors discussed in the text.

Error #R/R (ppb)

Relativistic and statistical 1.0
Compensation 0.4
Ion-ion interaction 0.2
Nonlinear B-field fluct. 0.2
Misalignment and harm. distor. 4.2

Total 4.3

FIG. 7. 6Li mass excess measured by the JILATRAP [15],
SMILETRAP [13] groups and the present work. The TITAN value is
in good agreement with that of Ref. [13].

This new 6Li mass confirms the SMILETRAP mass value
m(SMILE) = 6 015 122.890(40) u [13] while improving the
precision by a factor of 1.4 as shown in Fig. 7.

V. CONCLUSION

TITAN’s Penning trap mass spectrometer performed a mass
measurement on 6Li that resulted in a much improved determi-
nation of its mass and allowed one to resolve the disagreement
between two previous Penning trap measurements [13,15]. Our
measurement result is m(6Li) = 6.015 122 889(26) u, which
confirmed the value from Ref. [13]. The systematic errors
related to the measurement were studied in detail and include
relativistic correction, frequency shifts due to incomplete
compensation of the trapping field, ion-ion interaction, and
nonlinear fluctuations of the magnetic field. The dominant
source of systematic error (4.2 ppb) was the misalignment
and harmonic distortion, which came mainly from the factor
#A/Acal. = 1/7 in Eq. (11) and our conservative choices for ε
and θ . At present, the achieved precision is sufficient, however,
it is planned to measure these parameters to further reduce this
error. This new mass value for 6Li is of key relevance because
in the light mass region, where the neutron halo nuclei have
been investigated, several measurements with the TITAN’s
Penning trap mass spectrometer, such as 8He, 8Li, 9Li, and
11Li used 6Li as a reference mass. Furthermore, this new mass
determination to a level of precision of 4.4 ppb, makes 6Li
a solid anchor point for future mass measurements on highly
charged ions with m/q ∼ 6, as planned for unstable nuclei at
TITAN, but also for example at SMILETRAP for stable nuclei.
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Coulomb Breakup
• low-lying electric dipole strength E1 is enhanced 

for halos, because:

• one neutron-removal cross section σ-1n(E1) due to 
dipole strength E1 follows

σ−1n(E1) = σ−1n(Pb)− Γσ−1n(C)

σ−1n(E1) =

� ∞

Sn

16π3

9�c NE1(Ex)
dB(E1)

dEx
dEx

projectile

E1 virtual photon

core

neutron

target

• measured σ-1n has contributions from Coulomb and from nuclear interaction

• 2 targets:

– Pb (Z=82): Coulomb dominated

– C: pure nuclear contribution

– Γ scales nuclear part from C to Pb

E1 virtual photon number
•exponentially decreasing

E1 strength distribution
•peaked at around 1 MeV for s and p 
•maximum at higher Ex otherwise

‣ enhanced for s and p orbitals

‣ estimating σ-1n(E1) is thus a signature for a halo

}
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