

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

First Mass Measurements of Highly Charged, Short-lived Nuclides in a Penning Trap and the Mass of ⁷⁴Rb

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

nuclear masses: S_n, Q-value, ...

reliability?

reliability?

4

Penning traps and short half-lives

TRIUMF

Penning traps and short half-lives

higher precision

- ⇒ longer excitation time
- ⇒ larger B
- ⇒ more ions
- ➡ highly charged ions

⇒ CHARGE BREEDING

Advantages:

- ➡ more precise or
- ⇒ same precision in shorter time
- ⇒ same precision with lower yield
- ⇒ higher resolving power (isomers!)

precision case: ⁷⁴Rb for V_{ud} (CKM)

direct mass measuremnts in Penning trap:

- highest precision
- ISOLTRAP @ CERN

A. Kellerbauer et al., PRL 93, 072502 (2004) PRC 76, 045504 (2007)

Nuclide	D _{exp} (keV)			
	2000	2002	2003	mean
⁵⁴ Zn ⁷¹ Ga ⁷⁴ Ga ⁷⁴ Rb	-68 047(21) -51 905(18) ^b	-65 998.6(7.8) -70 137.5(1.2) -51 917.3(4.8) ^c	-68 019(32) -51 910.7(7.0) ^c	$\begin{array}{r} -65 \ 998.6(7.8) \\ -70 \ 137.5(1.2) \\ -68 \ 041(18)^{a} \\ -51 \ 914.7(3.9) \end{array}$

• limitation due to $T_{1/2} = 65$ ms

to improve precision further: HCI

uncertainty of δ_c due to charge radius \Rightarrow reduced by laser spectroscopy!

see talk by E. Mané

TITAN @ TRIUMF

charge breeding of ⁷⁵Rb

charge bred residual gas

charge breeding time

⁷⁶Rb

- first mass measurement of radioactive HCIs
- stat. uncertainty of < 300 eV achieved in a few hours

Ramsey excitation of ⁷⁵Rb

- Yield: around 2000/s + contamination from ⁷⁴Ga
- precision already comparable to ISOLTRAP (2007) <u>BUT</u>
- data of < 20 hours
- power outage during ⁷⁴Rb => reconditioning of EBIT => lower efficiency
- => "easy" improvement next time

RTRIUMF

charge exchange with residual gas

Open questions:

- impact of charge exchange on f_c?
- ion-ion interaction?
- what is the 'right' TOF range?

\Rightarrow improvement of vacuum desirable

but demonstrated $T_{rf} = 1$ s with $^{76}Rb^{8+}$

RTRIUMF

results

results

HCI and isomers

HCI and isomers

n -rich Rb,Sr

first UC-target @ TRIUMF see talk by P. Kunz

V. V. Simon et al., in preparation

n -rich Rb,Sr

first UC-target @ TRIUMF see talk by P. Kunz

summary

- accurate and precise masses are essential \Rightarrow Penning traps
- HCI boost precision by factor q
 - ➡ more precise (required for weak interaction studies)
 - ➡ same precision in shorter time
 - ➡ same precision with lower yield
 - ➡ higher resolving power (isomers)
- first mass measurement of highly charged, short-lived nuclides
- Rb, Ga, and Sr isotopes measured with q= 8 15+
- superallowed beta emitter ⁷⁴Rb (65 ms): improved Q-value
- demonstrated potential for resolving isomers: ^{78m,78}Rb
- <u>BUT</u>
 - reduce systematics to demonstrated level for SCI
 - ➡ improve vacuum further to avoid charge exchange
 - ➡ improve charge breeding (higher current, efficiency,...)

Thank you! Merci!

- The TITAN Group: Jens Dilling, Paul Delheij, Gerald Gwinner, Melvin Good, Alain Lapierre, David Lunney, Mathew Pearson, Ryan Ringle, Corina Andreoiu, Maxime Brodeur, Ankur Chaudhuri, Alexander Grossheim, Ernesto Mané, Brad Schultz, Martin C. Simon, Thomas Brunner, Usman Chowdhury, Benjamin Eberhart, Stephan Ettenauer, Aaron Gallant, Vanessa Simon, Mathew Smith
- TRIUMF Staff: Pierre Bricault, Ames Friedhelm, Jens Lassen, Marik Dombsky, Peter Kunz, Rolf Kietel, Don Dale, Hubert Hui, Kevin Langton, Mike McDonald, Raymond Dubé, Tim Stanford, Stuart Austin, Zlatko Bjelic, Daniel Rowbotham, Daryl Bishop

RIUMF

And the rest of the TITAN collaboration....

4004 Wesbrook Mall | Vancouver BC | Canada V6T 2A3 | Tel 604.222.1047 | Fax 604.222.1074 | www.triumf.ca