Plans for further technical development and improvements in trap-based mass measurements

National Science Foundation Michigan State University

Outline

- Range of relative mass precisions required for mass measurements of rare isotopes
- •Principles of Penning trap operation
 - •confining fields
 - •multipolar RF fields to drive ion motion
 - time-of-flight resonant detection technique
 - mass resolution
- •State of the art and future technical developments
 - Short and long term implementation
 - NSCL's possible contributions

National Science Foundation Michigan State University

Masses of rare isotopes

National Science Foundation Michigan State University

Penning trap basics

homogenous magnetic field

trapped ions execute three independent eigenmotions^{1,2}

Important relation:

$$\nu_c = \frac{q}{2\pi m} \cdot B = \nu_+ + \nu_-$$

electrode structure

National Science Foundation Michigan State University

eigenmotions can be driven with the application of RF fields

- mass measurements
- isobaric/isomeric purification
- cooling/centering of beam

L. S. Brown and G. Gabrielse, *Reviews of Modern Physics* 58, 233-311 (1986).
 M. König *et al.*, *Int. J. Mass Spectrom.* 142, 95-116 (1995).

Quadrupolar excitation and resonance timeof-flight detection

National Science Foundation Michigan State University

What goes into relative mass precision?

$$\frac{\delta m}{m} = \frac{\gamma}{R \cdot \sqrt{N}}$$

- Y system-specific scaling factor
 initial ion distribution
 extraction conditions
 length of flight path
 contaminant ions
- R resolving power of excitation $\ensuremath{\bullet}\xspace{-1mu}$ function of T_{rf} and v_c
- improved with:

optimized injection optimized ejection efficient purification

better excitation schemes charge breeding

large duty cycle fast purification

- detection efficiency
- •yield, total experiment time
- measurement overhead

Fast, efficient purification

Isobaric purification of contaminant species

•sideband cooling in a gas-filled Penning trap¹ (t ~ 100 ms)

(broadband, no knowledge of contaminant required)

•dipolar excitation of contaminants (t ~ 10 ms) (contaminant species need to be identified)

MR-TOF-MS Isobar Separator²

<u>Principle</u>: electrostatic mirror system drastically increases the ion flight path

Advantages:

- 1. extremely short measurement times (100 ns to 10 ms)
- 2. broad mass range
- 3. large ion capacity
- 4. high resolving power $(m/\Delta m \sim 100,000)$
- 5. compact setup

National Science Foundation Michigan State University

1. G. Bollen et al., J. Appl. Phys. 68, 4355-74 (1990).

2. W. R. Plaβ et al., Nucl. Instrum. Methods Phys. Res., Sect. B 266, 4560-4 (2008).

Fast, efficient purification

Implement SWIFT¹ Technique used in FT-ICR

Requirements

• Programming, function generator, amplifier

SWIFT is a cheap, efficient and fast solution

National Science Foundation Michigan State University Ryan Ringle TITAN Collaboration Workshop May 25th, 2010

400

0.0

200

300

Reduced cyclotron frequency (au)

1. S. Guan and A. Marshall, Int. J. Mass Spectrom., 5-37 (1996).

100

Excitation schemes (using quadrupolar RF field)

Ramsey offers greater resolving power free of charge •issues with isomer resolution, center freq. determination

N. F. Ramsey, *Reviews of Modern Physics* 62, 541-52 (1990).
 S. George *et al.*, *Phys. Rev. Lett.* 98, 162501 (2007).
 M. Kretzschmar, *Int. J. Mass Spectrom.* 264, 122-45 (2007).

Excitation scheme (using octupolar RF field)

R. Ringle *et al.*, *Int. J. Mass Spectrom.* **262**, 33-44 (2007).
 S. Eliseev *et al.*, *Int. J. Mass Spectrom.* **262**, 45 - 50 (2007).

Excitation scheme (using octupolar RF field)

Realistic multi-ion simulations:

- conversion frequency is dependent on amplitude
- smaller magnetron distribution yields higher resolving power
- increases in resolving powers of ≈ 20 within reach of current system
- preliminary results, further studies required
- no theoretical line shape

Experimental results:

- accuracy of ~ 5x10⁻⁹ experimentally verified
- $R_{oct} \sim 10$ R_{quad}

Moderate charge breeding on a budget

no EBIT and separate cooler trap required
efficient use of all charge states produced
less complicated

$$\nu_c = \frac{Q}{2\pi m} \cdot B = \nu_+ + \nu_-$$

Increasing q increases v_c larger v_c increases R for given T_{rf}

National Science Foundation Michigan State University

Moderate charge breeding on a budget

no EBIT and separate cooler trap required
efficient use of all charge states produced
less complicated

$$\nu_c = \frac{Q}{2\pi m} \cdot B = \nu_+ + \nu_-$$

Increasing q increases v_c larger v_c increases R for given T_{rf}

National Science Foundation Michigan State University

Moderate charge breeding on a budget

•no EBIT and separate cooler trap required
•efficient use of all charge states produced
•less complicated

$$\nu_c = \frac{Q}{2\pi m} \cdot B = \nu_+ + \nu_-$$

Increasing q increases v_c larger v_c increases R for given T_{rf}

National Science Foundation Michigan State University

Moderate charge breeding on a budget

•no EBIT and separate cooler trap required
•efficient use of all charge states produced
•less complicated

$$\nu_c = \frac{Q}{2\pi m} \cdot B = \nu_+ + \nu_-$$

Increasing q increases v_c larger v_c increases R for given T_{rf}

National Science Foundation Michigan State University

Moderate charge breeding on a budget

no EBIT and separate cooler trap required
efficient use of all charge states produced
less complicated

$$\nu_c = \frac{Q}{2\pi m} \cdot B = \nu_+ + \nu_-$$

Increasing q increases v_c larger v_c increases R for given T_{rf}

National Science Foundation Michigan State University

Mini Penning trap magnetometer

Time

- Beam time is "wasted" on measuring reference ions
- Does not account for non-linear field drifts

Magnetic field is calibrated with a mass measurement of a reference ion before and after each RI ion measurement

National Science Foundation Michigan State University

Mini Penning trap magnetometer

- Reference Ion Frequency (au) Magnetic field is actively monitored during measurements
 - Nonlinear drifts are systematically tracked

• Precision goal: <10⁻⁸

Time

Penning Trap

National Science Foundation Michigan State University

β-coincidence time of flight detection

background suppression for species with short half-life, low yield ¹⁴Be ~ 4 ms ¹⁹C ~ 46 ms ⁷⁰Kr ~ 57 ms MCP Al collector

N. R. Daly, Review of Scientific Instruments 31, 264-7 (1960).

Ryan Ringle TITAN Collaboration Workshop May 25th, 2010

National Science Foundation Michigan State University

E

β-coincidence time of flight detection

background suppression for species with short half-life, low yield ¹⁴Be ~ 4 ms ¹⁹C ~ 46 ms ⁷⁰Kr ~ 57 ms MCP

Al collector

N. R. Daly, Review of Scientific Instruments 31, 264-7 (1960).

Ryan Ringle TITAN Collaboration Workshop May 25th, 2010

E

National Science Foundation Michigan State University

β-coincidence time of flight detection

background suppression for species with short half-life, low yield $^{14}\text{Be} \sim 4 \text{ ms}$ ¹⁹C ~ 46 ms ⁷⁰Kr ~ 57 ms MCP +Al collector Si detector

N. R. Daly, Review of Scientific Instruments 31, 264-7 (1960).

National Science Foundation Michigan State University

3D cylindrical PIC code

Need to study space charge in traps for a variety of applications

Brute force: simulate \sim 1000 particles and scale Coulomb interaction for buffer gas cooling in Penning trap¹

3D cubic PIC: 10⁶ ions in cubic domain used to study image-charge detection in FT-ICR²

Problems with these approaches

brute force: not very realistic, ignores image charges, gets expensive cubic PIC: not a natural geometry for our traps, uniform cell volume

Benefits of 3D cylindrical PIC

- high cell density near origin
- natural boundary geometry
- ability to apply RF on boundaries
- add in physics (scattering, charge breeding, etc.)

Possible applications

- plasma evolution in trap
- side band or rotating wall cooling
- proton/electron cooling of HCI's
- thermalization in gas cells

1. D. Beck et al., Hyperfine Interactions. 132, 473-8 (2001).

2. E. N. Nikolaev et al., Rapid Communications in Mass Spectrometry 21, 3527-46 (2007).

National Science Foundation Michigan State University