Plasma Tools for Antimatter Physics*

Tobin R. Weber

Physics Department, University of California San Diego

Acknowledgements: C. M. Surko J. R. Danielson E. A. Jerzewski

*This work supported by NSF grant PHY 07-135958.

Antimatter Basics

- All known particles have an antiparticle
 - Equal mass, but opposite charge (q = -q)
 - Example: Antiprotons, positrons (antielectrons)
- Created during high energy processes when $E > mc^2$
 - Radioactive decay
 - High energy accelerators
- Annihilates with it's matter counter part

Positron Applications

- Positron beams to probe surfaces
- Creation of antihydrogen at CERN to test CPT symmetry
- Positron atomic physics

Future...

- Bose-Einstein condensed positronium
- Gamma ray laser
- Plasma diagnostics (test particle)

Current Limitation: Positron Sources

Low energy positron sources are weak, I ~ pA

Solution: Positron Trapping

Collect large numbers of positrons in charge particle traps

Outline

- High Field positron trap
- Beams
 - Extraction method
 - Predictions and results
- Attractive features
 - Cold beams
 - Narrow beams
 - Multiple beams
- Electrostatic beams

Outline

• High Field positron trap

- Beams
 - Extraction method
 - Predictions and results
- Attractive features
 - Cold beams
 - Narrow beams
 - Multiple beams
- Electrostatic beams

Penning-Malmberg Trap

-Uniform density (n_0) rigid rotor (E × B drift)

$$f_E \propto n_0$$

-Confined in state of thermal equilibrium -Infinite confinement times -Thermal equilibrium with walls

(Dubin, Rev. of Mod. Phys. '99)

High Field Trap

← 120cm →

-B = 5 T

 $-T_{elec} \sim 10 \Leftrightarrow 300 \text{ K}$ -Screen & Camera

-"Rotating Wall"

"Rotating Wall" Compression*

 $V = V_{RW} \cos[(2\pi f_{RW}) t + \theta]$

"Strong Drive" regime

X.-P. Huang, et. al., *PRL* '97. Danielson, et. al., *PRL* 05; 07; *Phys. Pl.* '06.

Trapping Parameters Achieved

- N~10¹⁰
 T < 20 meV
 n~5 × 10¹⁰ cm⁻³
 τ~days

High Quality Beams from Trap?

- Most positron applications require high quality beams (narrow, bright, and cold)
- Future applications hinge on beam quality

Outline

• High Field positron trap

• Beams

- Extraction method
- Predictions and results
- Attractive features
 - Cold beams
 - Narrow beams
 - Multiple beams
- Electrostatic beams

Extraction Method

Danielson, et. al., *Appl. Phys. Lett.*, 2007. Weber, et. al., *Phys. Plasmas*, 2008.

Beam Measurements

Outline

- High Field positron trap
- Beams
 - Extraction method
 - Predictions and results
- Attractive features
 - Cold beams
 - Narrow beams
 - Multiple beams
- Electrostatic beams

Beam Model

$$v_{z\min}(r) = \sqrt{-\frac{2e}{m_e} \left[V_E - \phi_o(r) \right]}$$

Beam Model

Beam Profile Theory

$$\sigma_{b}(r) = \int_{v_{z}} f_{p} d^{3} \vec{v} d\theta dz \approx \sigma_{0} \exp\left[-\left(\frac{r}{2\lambda_{D}}\right)^{2} + \frac{e\Delta\phi(r)}{T}\right]$$
Gaussian beam $\longrightarrow \Delta\phi(r) \approx \Delta\phi(0) + \frac{eN_{b}}{L_{p}}\frac{r^{2}}{\rho_{b}^{2}}$

Test Predictions

Beam Number Equation: $N_b(V_E)$ $N_b = \int_{v_z > v_{zmin}(r)} f_p d^3 \vec{r}$

$$v_{z\min}(r) = \sqrt{-\frac{2e}{m_e} \left[V_E - \phi_o(r) + \Delta \phi(r) \right]}$$

$$\Delta \phi(r) \approx -\frac{eN_b}{L_p} \left[\gamma + 2\log\left(\frac{R_W}{\rho_b}\right) + \Gamma\left(\frac{R_W^2}{\rho_b^2}\right) - \frac{r^2}{\rho_b^2} \right]$$

Beam Number Equation: $N_b(V_E)$ $N_b = \int_{v_z > v_{zmin}(r)} f_p d^3 \vec{v} d^3 \vec{r}$

$$v_{z\min}(r) = \sqrt{-\frac{2e}{m_e} \left[V_E - \phi_o(r) + \Delta \phi(r) \right]}$$

$$\Delta \phi(r) \approx -\frac{eN_b}{L_p} \left[\gamma + 2 \log \left(\frac{R_w}{\rho_b} \right) + \Gamma \left(\frac{R_w^2}{\rho_b^2} \right) - \frac{r^2}{\rho_b^2} \right]$$

$$N_b = A(V_E, \text{ plasma parameters})$$

Test Predictions

Weber, et. al., Phys. Plasmas, 2009.

Energy Distribution Function

NOT a thermal beam (i.e., Non-Maxwellian)

Outline

- High Field positron trap
- Beams
 - Extraction method
 - Predictions and results
- Attractive features
 - Cold beams
 - Narrow beams
 - Multiple beams
- Electrostatic beams

Energy Spread Trends

Low energy spreads ~ 4 K achievable!

Outline

- High Field positron trap
- Beams
 - Extraction method
 - Predictions and results
- Attractive features
 - Cold beams
 - Narrow beams
 - Multiple beams
- Electrostatic beams

Narrow Beams

 $\xi = 0.5$

Narrow Beams

 $\xi = 0.5$

Outline

- High Field positron trap
- Beams
 - Extraction method
 - Predictions and results
- Attractive features
 - Cold beams
 - Narrow beams
 - Multiple beams
- Electrostatic beams

Multiple Beams: Plasma Recovery

Multiple Beams Results

Outline

- High Field positron trap
- Beams
 - Extraction method
 - Predictions and results
- Attractive features
 - Cold beams
 - Narrow beams
 - Multiple beams
- Electrostatic beams

Electrostatic Beam

- Beam in B=0 region
- Applications include:
 - Microbeams through electrostatic focus and remoderation
 - Atomic physics scattering experiments
- Require extraction from the 5 T field

Single particle motion

•For slow extraction, particles stayed "glued" to field lines and maintain adiabatic invariant

$$\frac{E_{\perp}}{B} = const \; .$$

•Fast extraction, particles leave field lines and conserve canonical angular momentum with θ "kick"

$$L_z = const . = rp_\theta + qrA_\theta$$

Slow Extraction

Slow Extraction

as $B_f \rightarrow 0$ $\Delta E_{\parallel} = \sqrt{3/2T}$ $\Delta E_{\perp} = 0$ $\Delta E = \sqrt{3/2T}$

Fast Extraction

 $\rho_{bf} = \rho_{bi}$

Fast Extraction

 $\rho_{bf} = \rho_{bi}$

 $\Delta E_{\perp} \propto B^2 \rho_b^2 = \Delta E_{\parallel} \propto B^2 \rho_b^2 = \Delta E = \sqrt{3/2T}$

New Experiment

The Beam Line

A First Experiment

$\Delta E_{\perp} ({\rm eV})$	0.1	2.1×10^{-5}	0.45	4.65
$\Delta E \ (\mathrm{eV})$	0.24	0.24	0.24	6.58
$ ho_{ m b}~({ m cm})$	6.5×10^{-3}	0.45	0.45	0.14
$(\mathrm{cm}\sqrt{\mathrm{eV}})$	2.1×10^{-3}	2.1×10^{-3}	0.3	0.3

0

Advantages of Trap Based Positron Beams

- High brightness and low emittance
 - Rotating Wall
 - Cyclotron cooling to T_W
- Reproducible
- Efficiently use most trapped positrons
- Electrostatic beams

Conclusions

- Positrons have many exciting applications but require bright, energy resolved sources
- Penning-Malmberg trap has a great potential as a future positron source
- Demonstrated ability to confine large numbers, and extract tailored, high quality beams
- Electrostatic beam has been demonstrated
- Exciting new tools to drive positron research!

References:

T. R. Weber, J. R. Danielson, and C. M. Surko, *Phys. Plasmas* 16, 057105 (2009).
T. R. Weber, J. R. Danielson, and C. M. Surko, *Phys. Plasmas* 15, 012106 (2008).
J. R. Danielson, T. R. Weber, and C. M. Surko, *Appl. Phys. Lett.* 90, 081503 (2007).

http://positrons.ucsd.edu

