

Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Technical developments: RFQ/Laser

TITAN RFQ - A digital linear Paul trap

Quick facts and figures

- 700 mm long, $r_0 = 10 \text{ mm}$
- $C \approx 1500 pF$
- Stack of optically triggered MOSFETs produces RF
- 200 kHz to 1200 kHz frequency range
- Amplitude up to 800 V_{PP}

Gas-filled (He,H) linear Paul trap

TITAN RFQ - Forward extraction

TITAN RFQ primarily needed to:

- Decelerate ISAC's beam from < 40 keV to 2 keV
- Cool the incoming beam (reduce the phase space volume)
- Bunch the incoming DC beam and send pulses to MPET (EBIT)

Pulsed drift tube

- Defines beam energy
- Switches ions to GND potential

Incoming beam energy

Cage 2

Cage 3

High Voltage

To Penning

Status (T. Brunner SMI '10)

- Fully operational at 20 kV (8He beam time with 3 ions/minute at MPET MCP)
- Commissioned for 40 kV
- Frequency range from 250 kHz to 1200 kHz
- DC transmission of up to 80 % for Cs
- Broad mass range demonstrated for ion masses from 6 to 133
- Cooling with He and H possible
- Several online beam times with radioactive He, Li, K, Rb, Ca, In, Cs
 Nim B. in preparation (T. Brunner et al.)

This is as far as forward extraction goes....

Status (T. Brunner SMI '10)

- Fully operational at 20 kV (8He beam time with 3 ions/minute at MPET MCP)
- Commissioned for 40 kV
- Frequency range from 250 kHz to 1200 kHz
- DC transmission of up to 80 % for Cs
- Broad mass range demonstrated for ion masses from 6 to 133
- Cooling with He and H possible
- Several online beam times with radioactive He, Li, K, Rb, Ca, In, Cs
 Nim B. in preparation (T. Brunner et al.)

This is as far as forward extraction goes....

...this RFQ is also able to reverse-extract beams (demonstrated circa '06)

Which is very handy for laser spectroscopy:)

Reverse-bunched-beam laser spectroscopy

First on-line data on

78,78m Rb (I=0,4), ~ 1pA

Rb atomic structure

First on-line data on

78,78m Rb (I=0,4), ~ 1pA

Hyperfine structure: F = I + J

$$W_F = W_J + A \frac{C}{2} + B \frac{(3C/4)(C+1) - I(I+1)J(J+1)}{2I(2I+1)J(2I+1)}$$

$$A = \frac{\mu_I B_{eI}}{IJ} \quad B = eQ_s \left(\frac{\partial^2 V_e}{\partial z^2} \right)$$

$$C = F(F+1) - I(I+1) - J(J+1)$$

Results (in MHz)

	IS ^(78 -78m)	A (S _{1/2})	A (P _{3/2})	B (P _{3/2})
This work	67.1 (2.1)	1184.4 (0.6)	29.5 (0.2)	77.1 (2.2)
Other work ¹	74.6 (2.2)	1186.8 (1.0)	29.4 (0.5)	76.5 (3.7)

[1] C. Thibault et al. PRC 23 6 (1981)

This is not enough (never is)...so we need to make improvements

Ars longa,

vita brevis,

occasio praeceps,

experimentum periculosum,

iudicium difficile.

(Hippocrates)

A closer look at the polarizer line

A closer look at the polarizer line

A closer look at the polarizer line

Seeing the laser mode at the interaction region

Variable (on rail)

TITAN switch yard – 100 Hz rep. rate

Voltage (kV)

3.4

- > 1ms settling time achieved*
- 4 x Glassman 7.5 mA supp required
- Integration with EPICS
- 20/80 duty cycle

^{*} Supplies 1.5 m away from switch box

Another look at the polarizer line

- Doppler shift for 78Rb @ 28 KeV ~ 0.7 nm
- -> Background reduced only by a factor of 2...
- Might also be throwing away signal... (ang. dependence of interference filter)

Another look at the polarizer line

- Less background and no need of interference filter
- ...but solution requires fibre coupling!!

My wish list

- Measure the beam emittance (longitudinal and transverse) at the polarizer line <u>before and after RFQ</u>
- Voltage stability of RFQ (measure hfs over long t)
- Space-charge limit
- Optimal settings for operation (cooling time, RF, etc)
- Investigate double trap issue...

For that we need OLIS

OLIS beam time essential for the laser programme:

- Find tuning that works best to maximise transport and laser /ion overlap
- Efficiency measurements for Rb experiment (laser co and counter propagating)

Timeline for 2010

Plan for activities TITAN 2010 - > RFQ

	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
SETUP CHANGES											
Switch box for ISAC beamgate											
Switch box for RFQ pulsed drift tube (PLT)											
a) investigate current setup (including a test-setup for the switch)											
b) upgrade to 60 kV											
Replace RFQ PLT feed-through (Mel Good)											
Upgrade RFQ to 65 kV											
Make RFQ bakeable (sealing?) (Mel Good)											
Try to send Rb, Na , Kr, Ne through RFQ (beam from OLIS)											
Try to achieve 200 Hz repetition rate											
Voltage divider to measure HV											
EXPERIMENTS											
V.											
Rh (Poverse extraction bunched collinear laner spectroscom), MDET	-										
Rb (Reverse extraction bunched collinear laser spectroscopy), MPET											<u> </u>
MEASUREMENTS (DC, FORWARD, AND REVERSE EXTRACTION)											_
ine tookemento (bo, t oktiviko, tiko kevende extitutorion)											_
Cooling time X TOF distribution with RFQ=2 kV, avoid PLT (for Thomas)											
Efficiency in AC with preamp on Faraday cup (for Thomas)											
Investigations of space charge limit (with laser + OLIS)											
Emittance & energy spread (Emittance meter, laser + OLIS)											
Optimal parameters (trap potential, RF, gas) for different masses											
Investigation for reason of "sub-trap" in reverse extraction											

A closer look at the 78Rb spectra

