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TRIUMF: ββ−decay
 

and ion-traps

Münster,KVI,RCNP: (d,2He) and (3He,t) reactions



Charge-exchange
 

reactions
– 48Ca     published data (d,2He) and (3He,t)
– 64Zn     published data (d,2He) and (3He,t)

Very
 

new
 

data
 

from
 

RCNP
– 76Ge fully construct 2νββ-matrix element

– 82Se    one „leg“ of     2νββ-matrix element

– 96Zr fully construct 2νββ-matrix element

– 100Mo one „leg“ of     2νββ-matrix element

–128,130Te one „leg“ of     2νββ-matrix element
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from
 

radioisotopes
 

in a trap
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mass of 
Majorana
neutrino!!!

NOT accessible thru
charge-exchange reactions

forbidden in MSM
lepton number violated
neutrino enters as virtual
particle,            q~0.5fm-1
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Neutrinoless
 

Double
 

Beta Decay
 

Nuclear
 

Matrix
 

Elements
V.Rodin, A. Faessler, F. Šimkovic, P. Vogel, PRC 68 (2003) 044303;



• The problem of 0ν-NME:
–

 
there

 
is

 
little

 
experimental support

–
 

the
 

infamous
 

parameter
 

gpp
–

 
the

 
single

 
decay

 
properties

 
(β−, EC) 

cannot
 

be
 

described
 

consistently
–

 
the

 
g.s. nuclear

 
wave

 
function

 
is

 
not

 correct

The
 

2νββ
 

decay
 

NME is
 

the
 

testing
 

ground
for

 
nuclear

 
models





-
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48Ca(3He,t)   angular
 

distribution
 

(examples)



76Ge 
the

 
most

 
important

 ββ-decaying
 

nucleus



0.54



Again!!
an anticorrelation

of strength
(very

 
similar

 
to 48Ca)

! ! ! ! ! ! ! 

moderately
oblate/ prolate

(β2
 

~ 0.1)

An effect
 

of the
difference

 
of 

deformation
 

??
76Se:7676Se:Se:

76Ge:7676Ge:Ge:

oblate
(β2

 

~ −0.2)

some B(GT) 
in the bckgnd



about 60 !! individual levels up to 5 MeV  !!!



Correlate
 

states
 

within
 

the
 

expmtl
 

resolution

triplet
 

of 
states:

0.044, 0.082, 
0.12 MeV



Correlated
 

states
 

make
 

up 55% of 2νββ-ME  
MMDGTDGT

 

=0.09 MeV=0.09 MeV--11

Adding
 

correlation
 

with
 

undifferentiated
bckgnd

 
makes

 
up ~100% of 2νββ-ME

MMDGTDGT
 

= 0.14 + 0. 02 MeV= 0.14 + 0. 02 MeV--1 1 

TT1/21/2

 

= (1.5 + 0.4) x 10= (1.5 + 0.4) x 102121

 
yryr

−

0.14

−



96Zr 
the

 
most

 
neutron-rich

Zr-isotope
 

N-Z=16



first

96Mo(d,2He)96Nb 

(testing
 

β-
 branch)



96Mo

One transition
 

only
 

!!!



zero-degree
spectrum

only
 

one
 

1+
 

state
visibile

finite-degree
spectrum

(             )

2-states quickly
become

 
visibile

~ 2cmΘ °



second  

96Zr(3He,t)96Nb 

(testing
 

β+
 branch)



In (p,n) direction:
1 -

 
exceptionally

 
small

 
B(GT-) below

 
6 MeV

2 -
 

concentrated
 

in one
 

low-lying
 

level
 

only



(d,2He) (3He,t)

B(GT+) = 0.3 

Ex (MeV)

Fascination: With
 

this
 

1 level
 

only:
. 19

1/2
exp. 19

1/2

(2 ) (2.4 0.3) 10 years
(2 (2.2 0.4) 10 years  (NEMO3-result)

calcT
T

νββ

νββ

= ± ⋅

= ± ⋅

B(GT-) = 0.15 



82Se 
2νββ

 
half-life

 
recently

 
measured

T1/2=9.6 ±  
1.0 x 1019

 
y

by
 

NEMO-3 
Phys Rev Lett 95, 182302 (2005)





100Mo 
Important

 
for

ββ-decay
solar neutrino

 
detector

(Q=-168 keV)

SN-neutrino
 

detector
SN-neutrino

 
temperature



entire
 

low-energy
GT-

 
strength

 
is

concentrated
 

in ONE 
single

 
state

 
only, 

i.e. the
 

ground
 

state.

GOOD!!! for
 

SN-ν
temperature

 
meas‘nt

B(GT) =0.32  B(GT) =0.32  logftlogft (EC) = 4.54(EC) = 4.54
In perfect

 
agreement

 
with

 
Ejiri

 
et al. (1998): 

B(GT) = 0.33B(GT) = 0.33
At variance

 
with

 
recent

 
direct

measurement
 

by
 

Garcia:
B(GT) = 0.6 logft (EC) = 4.3



reducedreduced
spreadingspreading
of GT of GT 
strengthstrength

76Ge(β−β−

 

)

64Zn(εε, εβ+)

82Se(β−β−

 

)

96Zr(β−β−

 

)

100Mo(β−β−

 

)

In all cases:
the ME‘s up to ~5 MeV make up the relevant ME for the 2ν

 
decay



TITAN-EC 
Double-beta decay and 

ion traps

Westfälische 
Wilhlems-Universität Münster
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Electron capture branching ratios for the odd-odd 
intermediate nuclei in ββ

 
decay using TITAN-trap 

• Objectives: 
– experimental determination of nuclear matrix elements 

for 2νββ decay and 0νββ
 

decay 
– test theory and improve theoretical prediction
– allow more reliable extraction of Majorana neutrino mass 

from 0νββ
 

decay by using mostly experimental information 
•Technique:

– measurement of K-shell EC X-rays using radioactive ions (i.e. 
intermediate nuclei) trapped in an ion trap (EBIT) 

•Advantages:
– no backing material, i.e. no absorption
– high-purity sample
– background-free situation, i.e. precision and sensitivity
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Theory claims: 
1. both decay modes can be described

with ONE parameter only, gpp, 
which is the p-p part of the proton-
neutron two-body interaction

2. gpp is fixed to the experimental 
2νββ

 
decay half life (gpp ~1)

BUT
1.   there are no intermediate cross checks

with experiment
2. 2νββ

 
decay is sensitive to gpp, 

0νββ
 

decay is insensitive to gpp
3. nuclear structure remains hidden

Theory: trust us!!

Theoretical situation

sensitivity
 

to 1+ excitations

2-



MEC = 1.4   ε
 

= 0.095%    log ft = 3.77 theo
MEC = 0.51 ε

 
= 0.013% log ft = 4.6    exp

Recent critical assessment of      
the theoretical situation

1. gpp also enters into calculation
of single β

 
decay

2. this allows to make (in few cases) 
precise predictions about EC-rates

3. in confronting with experiment, 
theory fails BADLY 

(if EC is known)
~1.03
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Summarizing
 

the
 

theory
The use of gpp (ββ) ~ 1.0 reproduces the 2νββ

 decay half-life via a conspiracy of two errors: 
a much too large EC matrix element (too fast 
EC decay) is compensated by a much too 
small β−

 
matrix element (too slow β−

 
decay).

Discrepancies of 1 – 2 orders of magnitude 
are possible

The loose end:
EC rates

 
are

 
badly

 
known, or

 
not

 
known

 
at all



Experiment for EC using EBIT

port for X-ray
detector

trap center

        E-gun
(can be retracted)

distance from trap center [mm]
-600 -400 -200 0 200 400

B[T]
2

4

6

0

holding
 

7 ports
 

for
 

X-ray
 

detectors



Experiment for EC using EBIT
trap

223 mm

magnet
coils

recessed Be
window on
DN 160 CF
flange

thermal
shield

vacuum
housing

• 7 X-ray detectors
• 2.1% solid angle
(can be increased)

• 6T magnetic field
• carrierless suspension
of ions in UH vacuum

• 105 – 106 ions per load
• holding times: minutes 

or hours possible

Electrons
 

from
 

β-decay
 

(106
 

times
 

more
 

intense
 

than
EC) are

 
giuded

 
away

 
to the

 
exit

 
of the

 
trap

 
and can

be
 

used
 

for
 

monitoring
 

by
 

a channeltron





A=116
A=100
A=82
A=76



100Tc
1+ 0.0 15.8 s

172.2

QEC = 0.168

100Mo 100Ru

log ft = 4.6

2+

223.5
4+

(6)+
2-

MOON     1t material
NEMO-3  7kg

solar ν
 

detector
SUPERNOVA-detector
100Mo(ν,e-)100Tc β−

90 hours/10% measurement

116In
1+
5+

4+
2+

0.0 14.1 s

54.3 min127.3

223.3
273.0

QEC = 0.470

116Cd 116Sn

log ft = 4.7

8- 2.18 sIT(100%)

(in conflict with (3He,t))

Important measurements
also because of the present 
conflicting experimental
values.

8 – 100 hours depending on 
value of ε



82Br
5-2-

(1)+

0.0
35.28 h

75.1

QEC = 0.143

82Se 82Kr

6.13 min45.9
IT (97.6%)

NEMO-3

First time to measure EC (2- 0+) 
from an excited state but

a significant expmtl challenge!!

±

[ ] 19
1/2T (2 ) 9.6 0.3 1.0 10 yνββ = ± ± ⋅



76As
2-
(1)

+

0.0 26.24 h

QEC = 0.923

76Ge 76Se

The most important case!!!

exp. log ft (β-)  = 9.7
if log ft (EC) ~ 9.5

ε = 10-5 Estimated
 

measuring
 

time:
10-20 days

 
(long

 
half-life!)



TRIUMF-
 

measurement

radioactive 124Cs ions
trapped in a Penning trap

(first meas‘nt of X-rays
from trapped ions ever)

Refer to Thomas !!



type : Si(Li)
crystal Ø : 50 mm
crystal thickness: 2 mm
active area : ~2000 mm2

carbon window : 0.8 mm
outer Ø : 70 mm
dewar vol. : 7 l
holding time :  3-5 d
resolution : ~550 eV (@ 6keV)
mounting at any orientation possible

(LED & temp. readout available)

Delivery:   3  by Aug-31
4  by Sep-30

A warm-up is not destructive, but renwed 
pump down necessary (valve is available)

vacuum guaranteed for 3 yrs.



reset time:    5 – 7 μs
amplitude:    ~ 16 mV for 30 keV
rise time:     100±30 ns (20 – 80%)

ramp time: depends on rate
e.g.: for 100kHz @ 30 keV 3 ms

# of resets/s: max 325

(Canberra specs)



Components still needed

• HV power supply for 7 detectors (ISEG)
• cost ~ 10 k$

• amplifiers and shapers
• (be aware of ground loops!!)

• logic circuits
• Implementation into local DAQ
• support and holding structure
• .......



Charge-exchange
 

reactions
 

for
 

determining
double-ββ

 
decay

 
matrix

 
elements

 
will be

 continuing
i.e. (d,2He) for

 
„GT+

 
leg“

and
(3He,t) for

 
the

 
„GT-

 
leg“

 
(at RCNP)

Radioactive
 

beam
 

facilites
 

and ion
 

traps can
provide

 
nice

 
tools

 
for

 
getting

 
information

 about
 

the
 

0ν-ββ
 

decay
 

matrix
 

elements

Theorists
 

and expmt‘lists
 

alike
 

should
 

be
encouraged

 
to devise

 
new

 
methods

 
to test 

matrix
 

elements
 

for
 

0ν-ββ
 

decay
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