Hyperfine anomaly and nuclear g-factor measurements of Ba isotopes

Vladimir L. Ryjkov for G. Werth

Outline

- Hyperfine anomaly and motivation for the measurement
- TITAN setup
- Current status
- Summary

Hyperfine anomaly

Magnetic dipole interaction is the source of hyperfine energy $W_{\rm hfs}{\rm :}$

For point – like nucleus:

$$A = \mu_{I}B(0) \sim \mu_{I}|\psi(0)|^{2}$$

In reality:

$$A_{ex} = A (1-\varepsilon_{BW})(1-\varepsilon_{BR})$$

ε_{BW}: Bohr-Weisskopf effect. Reflects distributuon of magnetization in extended nucleus

 ϵ_{BR} : Breit-Rosenthal effect. Reflects change of electronic wavefunction by nuclear extension

Order of magnitude:
$$\varepsilon_{BW} \sim 10^{-1} - 10^{-3}$$
, $\varepsilon_{BR} << \varepsilon_{BW}$
 $A_{ex} = A (1 - \varepsilon_{BW})(1 - \varepsilon_{BR})$

What to measure

- ϵ_{BW} can not be measured directly since there is no point-like nucleus for comparison
- Instead, compare two isotopes :

$$\frac{A_{ex}(1)}{A_{ex}(2)} = \frac{\mu_I(1)}{\mu_I(2)} \frac{1 - \varepsilon_{BW}(1)}{1 - \varepsilon_{BW}(2)} = \frac{\mu_I(1)}{\mu_I(2)} (1 - \varepsilon_{BW}(1) - \varepsilon_{BW}(2))$$
$$= \frac{\mu_I(1)}{\mu_I(2)} (1 - \Delta^{1,2})$$

• Measure $\Delta^{1,2}$: differential hyperfine anomaly

Typical values

- $\Delta^{1,2}$ is typically $10^{-1} 10^{-3}$
- In order to determine $\Delta^{1,2}$ to 1% accuracy one needs to measure A and μ_1 for two isotopes to $10^{-3} 10^{-5}$.
- Values for Δ^{1,2} are known for all pairs of stable nuclei with non-zero spin. That is not a good sample for nuclear studies. Understanding in terms of nuclear models is poor.
- Systematic measurement of $\Delta^{1,2}$ for unstable isotopes will help to improve understanding of this effect.

Moskowitz-Lombardi rule

• Empirical relation for the hyperfine anomaly:

$$\varepsilon_{BW} = \frac{\alpha}{\mu_I}$$

- Works well for Hg isotopes
- Applicability requires a check with a different chain of isotopes

Hyperfine anomalies in Hg isotopes

Comparison of hyperfine anomalies for Eu isotopes

Measurement method

- Trapping of selected ions from outside source
- Selective laser excitation of ground state Zeeman sublevel (optical pumping)
- Induction of (rf) transitions between Zeeman sublevels
- RF resonance will result in state repopulation – thus change in fluorescence
- Calibration of magnetic field by cyclotron frequency of stored electrons in the same trap

Ba⁺ level diagram (I=0)

Zeeman splitting in the magnetic field (I=1/2)

$$\nu(B, I \pm 1/2) = -\frac{\Delta W}{2(2I+1)} + g_I \mu_B m_F B \pm \frac{\Delta E_0}{2} \sqrt{1 + \frac{4m_F}{2I+1}} x + x^2$$

 $x(B) = \frac{g_J \mu_0 - g_I \mu_B}{\Delta E_0} B$ $\Delta E_0 = \Delta W (I + 1/2)$

Breit-Rabi formula result for S_{1/2} ground state

Given the transition data

- 3 unknown quantities:
 - Hyperfine constant A
 - g_I
 - $-g_{\rm J}$
- g_J can be determined from even isotope (known for Ba⁺)
- Then 2 Zeeman transitions are required to determine A and g_l

Example: ¹³⁵Ba⁺ (I=3/2)

Ba isotopes

123	125	127	129	131	133	135	137	129	141
5/2	1/2	1/2	1/2	1/2	1/2	3/2	7/2	7/2	3/2
2.7 m	3.5 m	13 m	2.2 h	12 d	11 a			14 h	18 m

From Marik Dombsky webpage: ^{140}Ba yield is $7x10^9\ s^{-1}$ with $10\mu a$ proton beam.

Trap for spectroscopy

Estimate for the yield needed

- Ba⁺ represents a 3-level scheme with a long lived metastable state ($D_{3/2}$). The number of fluorescence photons is limited by the lifetime of this state (lifetime: 40 s). Reduced lifetime by collisions with buffer gas (N_2 , 10⁻⁴ mbar): **10 ms**
- 100 fluorescence photons per second from a single ion
- Detection efficiency: 10⁻³
 - •10% multiplier quantum efficiency
 - 10% solid angle
 - •10% filter and transmission losses

From 10⁴ ions in the trap on gets 10³ counts/s Photomultipler dark current: 10 counts /s

For ~1 min lifetime we need $10^2 - 10^3$ ions/s yield with no more than 90% isobaric contamination (assume 10^5 trap capacity). Also, this is a Penning trap, purification is possible!

Equipment needed

- ✓ Helholtz coil magnet with the field of up to 3T (we have 7T Belle magnet)
- ✓ Laser suitable for optical pumping of the Ba transition (from Mainz)
- ✓ Microwave generator of up to 100GHz (from Mainz)
- Penning trap (Mainz trap is available, but it is a bit too large for our magnet. Not a big deal)
- ✓ Low noise PMT with good quantum efficiency at 650nm

Other (more difficult!) possibilities

Conclusion

- Very feasible experiment with solid motivation
- Equipment for Ba experiment would be mostly available
- If additional construction on the TITAN platform is undesirable, can be done off-line collecting isotopes on a foil