Superallowed β-Decay Studies at TRIUMF-ISAC: New Precision Measurements at the Limits of Nuclear Stability

Gordon C. Ball

TITAN Workshop, TRIUMF June 11, 2005

- overview of superallowed Fermi $0^+ \rightarrow 0^+ \beta$ -decay
 - - present status of V_{ud} and the CKM unitarity problem
- the search for 'trivial explanations' to resolve the problem
 - focus on nuclear structure dependent corrections
 - where are new measurements are needed
- New developments in superallowed β -decay studies at ISAC
 - high precision lifetime and branching ratio measurements with the 8π gamma-ray spectrometer and SCEPTAR
 - high precision mass measurements of highly-charged ions(TITAN)
- Need for improved Q_{EC} measurements
- Summary

Probing for Physics beyond the Standard Model via the Cabibbo-Kobayashi-Maskawa (CKM) matrix

- The CKM matrix plays a central role in the Standard Model
 - it is a matrix that describes mixing of different quark families because of the weak interaction

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

• The CKM matrix must satisfy unitary condition ⇒ sum of squares on each row must add to 1, i.e.,

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$$

The first row of the CKM matrix provides the most demanding experimental test of the unitarity condition.

Current Status of Experimental Test of CKM Unitarity

Present status of V_{us}

- Obtained from semileptonic decay of neutral and charged kaons
 - four independent determinations $K^{+}_{e3}, K^{+}_{\mu3}, K^{0}_{e3}$ and $K^{0}_{\mu3}$
 - need to measure the decay rate $\Gamma(K \rightarrow \pi l \nu + n\gamma)$ and the momentum dependence of two form factors $f_+(t)$ and $f_0(t)$
 - theoretical radiative and isospin-breaking corrections
 - present PDG value $|V_{us}| = 0.2196$ (23)
- new experiments in progress E865, KLOE, NA48, KTeV, CMD2
 - $K^+ \rightarrow \pi^0 e^+ v_e (K^+_{3e})$ (E865, Sher et al PRL 91(2003)261802) results in $|V_{us}| = 0.2272 (23_{rate})$

- removes unitarity problem but inconsistent with recent NA48 and KLOE data

Nuclear Physics Contribution to the CKM Matrix

- Leading order terms in δ_R and Δ_R^V (radiative corrections) are on a firm footing (QED)
- δ_C represents isospin-symmetry-breaking correction
 - viewed as greatest contribution to overall uncertainty

Experimental quantities needed for CKM Matrix Unitarity tests

- In order to extract G_V^2 , the decay process must be limited to pure Fermi decay, achieved by considering only $0^+(A,Z) \rightarrow 0^+(A,Z-1)$ decays between isobaric analogue states
- The experimental contribution to $f t (1-\delta_c)(1+\delta_R)$
 - 1) decay Q value (or masses of initial and final state) to determine f
 - **2)** Half life $t_{1/2}$
 - 3) $0^+ \rightarrow 0^+$ branching ratio
- Experimentally, need $t_{1/2}$, branching ratio, and masses measured to better than $\pm 0.1\%$

Current status of precision *Ft* values

J.C. Hardy and I.S. Towner, PRC 71, 055501 (2005)

Future directions for superallowed β -decay studies

- Present uncertainty in V_{ud} is dominated by theoretical corrections (Towner and Hardy, Phys. Rev C66(2002)035501)
 - uncertainties in radiative corrections are small
 - focus is on isospin symmetry-breaking corrections (δ_C)

Experimental Measurements

- Improved precision for nine well-known transitions
- Study of $T_Z = 0$, odd-odd nuclei with $A \ge 62$
 - all nuclei are near proton drip line resulting in large Q values (~10 MeV) and short half-lives (~ 50-100 ms)
- Study of $T_Z = 1$ nuclei with $18 \le A \le 38$

- all nuclei have large (~ 5-50%) branches to excited 1⁺ states Improved theoretical calculation needed especially for $A \ge 62$

Isospin Symmetry Breaking Corrections

High-precision Superallowed β -decay studies at ISAC

High precision lifetime measurements at GPS

High-precision branching ratio and lifetime measurements with the 8π and SCEPTAR

High-precision mass measurements with TITAN

ISAC:

• ~ 4000 ⁷⁴Rb ions s⁻¹

• isobaric contaminant 74 Ga (t $\frac{1}{2}$ = 8.12 m)

• t _{1/2} uncertainty 0.05%

64.761 ± 0.031 ms

G.C. Ball et al., Phys. Rev. Lett. 86, 1454 (2001)

Summary of high-precision lifetime measurements for ^{26m}Al

- 6346 ± 5 ms Freeman et al (1969)
- 6346 ± 5 ms Azuelos et al (1974)
- $6339.5 \pm 4.5 \text{ ms}$
- $6346.2 \pm 2.6 \text{ ms}$ $6344.9 \pm 1.9 \text{ ms}$
- Alburger el al (1977)
- Koslowsky et al (1983) weighted average

Present objectives:

- a new measurement with a precision of 1.5 2.0 ms
- requires a beam intensity of ~ 5 x 10^4 /s and a purity of >99.99%

β -decay studies with the reconfigured 8π gamma-ray spectrometer and SCEPTAR at ISAC-I

8π Spectrometer with SCEPTAR and moving tape system

MCS betas from SCEPTAR

³⁴Ar Superallowed Beta Decay ³⁴Ar

Test of Gamma-Ray Lifetime Method with Radioactive ²⁶Na Beam to 8π – August 2002

Counts / 100 ms

E985: Half-life and Branching-ratio Measurement of ¹⁸Ne Superallowed Fermi β decay (Spokesperson: M.B. Smith)

Mass excess (Q_{EC}) known to ± 1.5 keV (¹⁸Ne) and ± 0.6 keV (¹⁸F) Excitation energy of 0⁺ state known to ± 0.08 keV

Half-life measurement with the 8π spectrometer

7s beam implantation followed by 40 s decay

M.B. Smith, G.F. Grinyer et al., to be published

Parent/d	laughter	property1	Measured energy, Q_{EC} (keV)			Average value	
nuc	lei		1 5914.76 ± 0.60 [Ja78]	2	3	Energy (keV) 5914.76 ± 0.60	Scale
³⁸ Km	³⁸ Ar	$Q_{EC}(gs)$					
		$E_x(p0^+)$	130.4 ± 0.3 [En98]			130.4 ± 0.3	
		$Q_{BC}(sa)$	6044.6 ± 1.5 [Bu79]	6044.38 ± 0.12 [Ha98]		6044.40 ± 0.11	1.0
⁴² Sc	⁴² Ca	$Q_{EC}(sa)$	6423.71 ± 0.40 [Vo77]	6425.84 ± 0.17^8		6425.63 ± 0.38^3	3.2
⁴⁶ V	⁴⁶ Ti	$Q_{EC}(sa)$	7053.3 ± 1.8 [Sq76]	7050.41 ± 0.60 [Vo77]		7050.71 ± 0.89	1.6
⁵⁰ Mn	⁵⁰ Cr	$Q_{EC}(sa)$	7632.8 ± 2.8 [Ha74d]	7631.91 ± 0.40 [Vo77]		7632.43 ± 0.23^3	1.0
⁵⁴ Co	⁵⁴ Fe	$Q_{EC}(sa)$	8241.2 ± 1.8 [Ho74]	8245.6±3.0 [Ha74d]	8241.61 ± 0.60 [Vo77]	8242.60 ± 0.29^3	1.5
⁷⁴ Rb	⁷⁴ Kr	ME(p)	-51915.2 ± 4.0 [Ke04]			-51915.2 1	: 4.0
		ME(d)	-62332.0 ± 2.1 [Ke04]			-62332.0 1	: 2.1
		$Q_{EC}(sa)$				10416.8 1	: 4.5

Current status of precision *Ft* values

J.C. Hardy and I.S. Towner, PRC 71, 055501 (2005)

Future High Precision measurements for Superallowed β-Decay Studies at ISAC

- ${}^{34}\text{Ar}: t_{\frac{1}{2}}, BR$
- ⁷⁴Rb BR, mass
- ${}^{62}\text{Ga}$ t ${}_{\frac{1}{2}}$, BR, mass
- ⁶⁶As t $_{\frac{1}{2}}$, BR, mass
- 70 Br t $_{\frac{1}{2}}$, BR, mass
- 38m K BR, 0_2^+
- ¹⁸Ne t $_{\frac{1}{2}}$, BR, mass
- 26m Al t $_{\frac{1}{2}}$, BR. mass

Summary

- New techniques are improving the precision of superallowed βdecay studies and providing for the extension to other cases such as the short lived heavier nuclei
- Higher precision mass measurements are needed not only to determine the Q_{EC} values for $A \ge 62$, $T_Z = 0$ nuclei but also to improve and/or verify previous data for the nine "well known" cases
- Improved theoretical corrections for δ_C are needed especially for heavier nuclei.
- The theoretical uncertainty in $\Delta_{\mathbf{R}}$ common to neutron, pion and beta decay needs to be addressed.
- Several new high statistics measurements of V_{us} are in progress but uncertainties of the vector form factor remain
- What will be the outcome, trivial or not ?

8π Collaborators 2002 - 2004

TRIUMF G.C. Ball I. Behr P. Bricault M. Dombsky G. Hackman J.A. Macdonald[†] C. Ravuri A. Andreyev H.C. Scraggs M.B. Smith C. Morton C. Pearson C. Osborne J. Daoud E. Cunningham **D.F.** Hodgson K. Cheung **B.**Eshpeter K. Koopmans D. Van der Kamp **D.** Melconian

A.A. Phillips M.A. Schumaker G.F. Grinyer **B.** Hyland **P.** Finlay C. Andreoiu J.J. Valiente-Dobon **McMaster** J.A. Cameron J.C. Waddington **B.** Singh **B.** Washbrook M. Lee N. Novo Colorado F. Sarazin Toronto T.E. Drake

Guelph

C.E. Svensson

P.E. Garrett

Queens J.R. Leslie LS. Towner Simon Fraser M.E. Hayden T. Warner I. Ressler **British Columbia** M. Pearson Berkeley D. Ward Georgia Tech. J.L. Wood W.D. Kulp J. Allmond St. Mary's **R.A.E.** Austin

Livermore J. A. Becker W.E. Ormand A. Schiller

Louisiana State E. Zganjar A. Piechaczek

<u>Michigan</u> T.E. Chupp S. Nuss-Warren E. Tardiff

<u>Oregon</u> K. Krane

P. Schmelzenbach

<u>AERI, Japan</u> T. Shizuma Texas A&M J.C. Hardy V. Iacob

<u>Youngstown</u> J.J. Carrell R. Propri

Manchester D.M. Cullen

<u>Surrey</u> P. Regan P.M. Walker C. Whelden S.F. Ashley S.J.Williams <u>Vienna</u> J.Schwarzenberg <u>GSI</u> Y. Litvinoy

Professor/Scientist Research Associate

Graduate Student

t Undergraduate Student

[†]deceased

The superallowed β-emitter ^{26m}Al

High-precision branching ratio measurement for ^{26m}Al 9.94 24Mg+t-p <u>9.31</u>3* ³⁶Na 1.07 s 9.17 6 <u>8.87</u> ²⁵Mg+d-p 8.20 7.95 Present limit $< 7 \times 10^{-5}$ 7.35 7.40 Proposal to reduce the limit 7.10 6.88 7.06 6.98 to $< 7 \ge 10^{-6}$ 6.62 ß 6.26 6.13 •Requires a beam purity of For β^- decay see table 26.10 5.69 5.72 ~10-5 5.47-5.29-4.90 4.97 ^{4.84} ²⁵Mg+t-d 4.83 4.33 4.35 4.32 0*;1 6.345 s 0.23 5 4.00 **1Ö0** 3.94 26AI 7.4×10[°] y 0* 3.59 _{2.94} 90 10 2m.c* EC 2* ^{1.82} ²³Na+α-p 88% For β⁺+EC decay see table 26.10 >99.99% -0.03 29Si+n-α ²⁶Mg

Theoretical corrections in superallowed Fermi β decay

•it is convenient to separate the radiative corrections into two terms

 $\delta_{\mathbf{R}} = \delta_{\mathbf{R}}^{1} + \delta_{\mathbf{NS}}^{1}$

• combining the radiative and Coulomb nuclear structure dependent corrections we obtain:

Parent	$\delta_{\rm NS}(\%)$	$\delta_{C1}(\%)$	$\delta_{C2}(\%)$	$\delta_C = \delta_{\rm NS}(\%)$
$T_{\tau} = -1$				
¹⁰ C	-0.360(35)	0.010(10)	0.170(15)	0.540(39)
¹⁴ O	-0.250(50)	0.050(20)	0.270(15)	0.570(56)
¹⁸ Ne	- 0.290(35)	0.230(30)	0.390(10)	0.910(47)
²² Mg	-0.240(20)	0.010(10)	0.255(10)	0.505(24)
²⁶ Si	-0.230(20)	0.040(10)	0.330(10)	0.600(24)
³⁰ S	-0.190(15)	0.195(30)	0.740(20)	1.125(39)
³⁴ Ar	- 0.185(15)	0.030(10)	0.610(40)	0.825(44)
³⁸ Ca	-0.180(15)	0.020(10)	0.710(50)	0.910(53)
⁴² Ti	-0.240(20)	0.220(100)	0.555(40)	1.015(110)
$T_z = 0$				
^{26m} A1	0.009(20)	0.040(10)	0.230(10)	0.261(24)
34C1	-0.085(15)	0.105(20)	0.530(30)	0.720(39)
^{38m} K	-0.100(15)	0.100(20)	0.520(40)	0.720(47)
⁴² Sc	0.030(20)	0.060(30)	0.430(30)	0.460(47)
⁴⁶ V	-0.040(7)	0.095(20)	0.330(25)	0.465(33)
⁵⁰ Mn	-0.042(7)	0.055(20)	0.450(30)	0.547(37)
⁵⁴ Co	-0.029(7)	0.040(15)	0.570(40)	0.639(43)
⁶² Ga	- 0.040(20)	0.330(40)	1.05(15)	1.42(16)
⁶⁶ As	-0.050(20)	0.250(40)	1.15(15)	1.45(16)
^{70}Br	-0.060(20)	0.350(40)	1.00(20)	1.41(21)
⁷⁴ Rb	-0.065(20)	0.130(60)	1.30(40)	1.50(41)

Ft = ft $(1 + \delta_{NS}^1 - \delta_C)$